
1

Andrew Ladlow

Gesture Interpreter

B.Sc. (Hons) Computer Science

14th March 2016

2

I certify that the material contained in this dissertation is my own work and does not contain

unreferenced or unacknowledged material. I also warrant that the above statement applies to

the implementation of the project and all associated documentation. Regarding the

electronically submitted version of this submitted work, I consent to this being stored

electronically and copied for assessment purposes, including the Department’s use of

plagiarism detection systems in order to check the integrity of assessed work. I agree to my

dissertation being placed in the public domain, with my name explicitly included as the

author of the work.

Date:

Signed:

All project files are available at:

http://www.lancaster.ac.uk/ug/ladlow/

http://www.lancaster.ac.uk/ug/ladlow/

3

Contents

1 Introduction 5

1.1 Motivation .. 5

1.2 Project Aims ... 6

1.3 Report Overview .. 6

2 Background 7

2.1 Leap Motion ... 7

2.2 British Sign Language in Education .. 8

2.3 Gesture Recognition ... 8

2.3.1 Dynamic Time Warping .. 8

2.3.2 K-Nearest Neighbour & Support Vector Machines .. 8

2.3.3 $P Point-Cloud Recognizer ... 9

2.3.4 Hidden Markov Models .. 9

2.3.5 Artificial Neural Networks .. 9

2.3.5 Research Summary .. 10

2.4 Similar Applications .. 10

2.4.1 Leap Trainer .. 10

2.4.2 UNI .. 10

2.4.3 Similar Applications Summary ... 11

3 Design 12

3.1 User Requirements ... 12

3.2 User Interface Design ... 16

3.3 System Architecture ... 17

3.4 Platform Selection .. 19

4 Implementation 21

4.1 Leap Motion Integration .. 21

4.2 Graphical User Interface .. 21

4.3 Hand Visualization ... 23

4.4 Gesture Recognition ... 23

4.5 Gesture Comparison ... 26

4.5.1 Adaptation of the P-Dollar Recognizer ... 26

4

4.5.2 Normalization .. 26

4.5.3 Machine Learning ... 27

4.6 Application UML Diagram .. 28

5 The System in Operation 30

5.1 Initial Application State ... 30

5.2 Hand Enters Field Of View .. 30

5.3 Recognition .. 31

5.4 Final Score ... 32

5.5 Calibration .. 33

6 Testing and Evaluation 34

6.1 Testing Procedure .. 34

6.2 User Requirements Analysis .. 34

6.3 Recognition Analysis ... 35

6.4 Leap Motion Performance ... 39

6.5 Application Performance ... 41

6.6 User Feedback .. 42

7 Conclusion 46

7.1 Aims Analysis .. 46

7.2 Future Work ... 47

7.3 Lessons Learned ... 48

7.4 Project Conclusion ... 48

References 49

5

Chapter 1

Introduction

1.1 Motivation
The project’s aim is to develop a gesture interpretation application, designed to recognise

gestures used in the British Sign Language (BSL). The proposed application should accomplish

this through the use of a motion tracking sensor device, the Leap Motion.

Human-computer interaction has, for many years, been limited to keyboards and mouse

devices. With the more recent development of smartphones and tablets we have seen numerous

technological advancements utilising touch-screen based devices instead.

Although these techniques are generally well implemented, it could be argued that they’re

inherently unnatural when compared with real world, physical interaction. The problem lies in

the fact that all of these methods require the use of some form of hardware peripheral in order

to facilitate human-computer communication.

The project’s proposed application aims to utilise gesture recognition in order to provide a

more natural form of communication. Gesture recognition involves the use of a middleware

(software bridge or interface) which captures and processes images in order to convert them

from raw frame data input into an output understood by a computer. In the case of the Leap

Motion, this middleware receives input via an associated hardware controller. The distinction

between this device and a typical keyboard or mouse is that the former will automatically

capture a user’s input, whereas the latter requires explicit user input i.e. pressing a key or

moving a mouse.

The area of gesture recognition is particularly relevant for deaf or otherwise hearing-impaired

users who are reliant on gesture based languages such as the BSL. The task of learning a sign

language may seem particularly daunting due to its differences compared with typical spoken

languages. Children are said to grasp new languages faster than adults - yet those who are born

deaf to hearing parents are likely to be delayed in their exposure to a sign language, during a

time period where faster exposure is critical, due to parents’ lack of familiarity with them. A

system designed to aid users in the understanding of a sign language would therefore be

beneficial in cases such as this.

The low cost of the Leap Motion device makes it viable for purchase by individual users for

self-study with the proposed application, or for possible involvement with existing sign

language courses in order to aid in streamlining the overall learning process. Education courses

which rely on a sign language tutor could be augmented through the use of the application,

with the tutor storing accepted gestures in the application before distributing it to students. In

this way, students would gain independence in their learning and the ability to learn at their

own pace.

6

1.2 Project Aims
The aims of the project application as a whole are summarised as follows:

 Record sign language gestures performed by a user by storing image data from a Leap

Motion device

 Recognise the gestures representing British Sign Language alphabet characters and

distinguish between them

 Given an unknown gesture by a user as input, output an identified matching gesture

with an associated similarity score

1.3 Report Overview
The structure of the report is as follows:

Chapter 1 discusses the problem domain and the proposed solution, including its aims.

Chapter 2 analyses relevant studies and related work, as well as any similar applications.

Chapter 3 identifies the user requirements for the application, and subsequently details

appropriate architectural designs and an initial design for the application user interface.

Chapter 4 covers the implementation of the application, providing an overview of the

application layout and structure.

Chapter 5 describes the operation of the application with the aid of screenshots.

Chapter 6 explains the application test procedure and analyses the results of these tests,

followed by an overall evaluation of the system.

Chapter 7 concludes the report, summarising how well the application met its original aims,

any identified limitations and scope for possible future work. The report ends with an overall

conclusion the project.

7

Chapter 2

Background

2.1 Leap Motion
The Leap Motion is a palm sized USB device which tracks hands and fingers using optical

sensors and infrared lights. The device was first released by Leap Motion, Inc. in July 2013[3].

According to Weichert, et al [20], the Leap Motion is capable of recognising movement with

an accuracy of 0.7mm. Comparable devices in a similar price range, such as the Microsoft

Kinect, fared much worse in these tests, achieving an average accuracy of 1.5cm. Considering

the reasonable success of the Kinect, the Leap Motion provides further innovation potential in

the domain of gesture recognition.

A major software update, firmware version 2, was released for the device in May 2014 [6]. The

update claimed improved tracking performance and an enhanced API feature set through the

inclusion of additional tracking capabilities for each individual bone in the hand, allowing for

a level of tracking precision that was previously impossible with the device. The ability to track

individual bones is a great benefit for sign language recognition purposes, and could be

considered a necessity in order to track the difference between especially similar gestures.

An image of the device is shown in figure 2.1.

Figure 2.1: Leap Motion device

One of the earliest studies relating to the use of the Leap Motion controller in order to detect

sign language gestures was undertaken by Potter, et al [15]. The authors noted that although

the controller showed potential, further development of the API was required. This was mainly

due to inaccurate hand detection in certain scenarios such as pinching fingers together,

interlocking hands or holding one hand above the other – all of which created anomalous data

due to the obscuration of finger position information. It’s important to clarify that this study

was undertaken using the device’s initial release firmware (V1) as opposed to the

aforementioned updated firmware (V2). As such, it’s likely that the capabilities of the device

will have since improved.

8

2.2 British Sign Language in Education
BSL courses such as those offered by the nationally accredited Signature [16] award a number

of qualifications ranging from ‘Level 1’ to ‘Level 6’, with each level requiring an incrementing

range of known vocabulary required in order to qualify. Each level’s accompanying

qualification is composed of a number of modules, where each of which focus on a particular

subtopic e.g. ‘BSL conversational skills’ or ‘Understand varied British Sign Language in a

range of work and social situations’. All of these modules include guided contact time as well

as additional work intended for private study. There is also an accredited online learning

resource available for an additional cost.

The problem with this current system is that users new to the language are incredibly reliant

on their tutors for guidance – online resources can help but only to a certain degree. Users may

often need reassurance or additional guidance to ensure they are performing gestures correctly

or to clarify gestures they’re unfamiliar with. The instant feedback provided by the proposed

application would be a great benefit in this regard. The inclusion of such an application could

prove helpful for both students undertaking these BSL courses, as well as the centres offering

them, as tutors would be able to distribute their time more effectively.

2.3 Gesture Recognition
Probably the most important aspect of the system is its gesture recognition – as we’re dealing

with data in real time, a suitable algorithm should calculate match results on the fly without

causing delay or otherwise affecting the user when the application is running. Most approaches

apply some form of machine learning on the Leap Motion frame data, or a specific subset of it.

Generally it’s difficult to say with certainty that one algorithm is better than any other due to

the variance of testing conditions, input data, sign language variant, and so on. Some feasible

examples are shown in subsections 2.3.1 through 2.3.5. Following this, a conclusion of my

findings is covered in subsection 2.3.6.

2.3.1 Dynamic Time Warping

The use of dynamic time warping (DTW) was explored by Vikram, et al [18]. The appeal of

DTW is that it isn’t reliant on the time taken or speed of each input in order to accurately

compare them – this is particularly useful with gestures which are often performed at varying

speeds. The authors demonstrate how DTW could be applied to 2D handwriting gestures and

suggested that it could be extended for use with 3D data, i.e. gestures. They conclude that the

DTW approach used is suitable for real-time comparison but it remains to be seen whether that

is still the case when dealing with the increased complexity of gestures compared with just

handwriting.

2.3.2 K-Nearest Neighbour & Support Vector Machines

K-Nearest Neighbour (KNN) and Support Vector Machines (SVM) were proposed by Chuan,

et al [2] as recognition algorithms for the American Sign Language using the Leap Motion.

Tests were carried out using the 26 letters of the alphabet - results showed a recognition

accuracy rate of 72.78% and 79.83% for the two methods, respectively. The authors mention

9

some possible reasons for the low accuracy with both algorithms; compared with the BSL

alphabet, the ASL is signed using only one hand – as a result some letter representations are

very close to one another which led to misclassifications of the Leap Motion data. The use of

BSL with these methods could show improved results as all of its gestures require two hands

to perform and are therefore more varied.

2.3.3 $P Point-Cloud Recognizer

The $P recognizer ($P), designed by Vatavu, et al [17], is another example of a gesture

recognition algorithm. As described in the paper, the $P is “a 2-D gesture recognizer designed

for rapid prototyping of gesture-based user interfaces”. The $P aims to overcome the complex

task of matching user gestures by instead treating them as groups or “clouds” of points and

evaluating each one in turn. Even the simplest of gestures could be created in many different

ways depending on the properties of its strokes e.g. start and end points, order or time, and

direction. The use of a point cloud helps remove any ambiguity from the gesture which

simplifies comparison and recognition. According to the paper, the algorithm requires only 70

lines of code to function and delivered over 99% accuracy in user-dependant testing.

2.3.4 Hidden Markov Models

Markov models, in particular Hidden Markov Models (HMM), are generally known for their

use in pattern matching algorithms for speech recognition or typing prediction. A Markov

model is a network of states with each state being connected to another with a specific weight

or probability. In a Markov model based system the future state of the system is only dependant

on its current state and the probability of the states it’s linked to. A HMM differs in that its

state is partially obscured. An example of this could be found in a speech recognition system

where we are able to observe a waveform of speech but the actual spoken words is hidden. This

can be compared to a gesture recognition system where we are given the movement data of a

gesture but the actual intended gesture is hidden.

The use of a HMM was proposed by Chen [1] to support 2D and 3D motion recognition,

achieving recognition rates of 91.9% in user-dependant testing and 96.9% in user- independent

testing.

2.3.5 Artificial Neural Networks

The use of artificial neural networks (ANN) was previously proposed by Mohandes, et al [11],

in particular a Multilayer Perceptron neural network (MLP) for use with the Arabic Sign

Language (ArSL). The proposed system resulted in a classification accuracy of over 99%. An

artificial neural network is a type of machine learning algorithm which bears similarity to the

human brain in that it is composed of a series of simple processing units, neurons. These

neurons are interconnected and each of these connections have a determined weight. The

network learns from experience when provided with test data, calculating specific outputs for

given inputs.

It’s noted that the testing produced some erroneous results, similar to those found in the

KNN/SVM with ASL testing described earlier. In this case this was due to fingers being

10

occluded by the palm of the hand or by other fingers during recognition, as opposed to gestures

just being too similar to one another to discern between. The authors suggest the use of a second

Leap Motion device positioned to the side of the user. Combined with the Leap Motion in front

of the user this should theoretically resolve the observed issues, though further work has yet to

be carried out.

2.3.5 Research Summary

The above research shows that a number of studies have been carried out relating to sign

language recognition with the Leap Motion and similar devices, using a wide variety of gesture

recognition algorithms, though with varying levels of success.

As the project’s aims are similar to many of these studies, there’s not much value in simply

repeating them as we can already view the results for a number of sign languages. Similarly,

creating an entirely new machine learning algorithm is beyond the scope of the project, more

so given that there is already a wide range of publically available algorithms. Instead, it’s worth

considering identified approaches which have yet to be fully explored.

In particular, the $P recognizer (as discussed in subsection 2.3.3) has yet to be incorporated

into a BSL recognition application – therefore it would be beneficial to record the capabilities

and performance of this algorithm in greater detail. The $P is based on a Euclidean distance

scoring system, similar to that used by Vikram, et al [18] with dynamic time warping, which

mentioned possible future work in the 3D domain. The characteristics of the $P suggest it

should be plausible to modify it in order to support 3D gestures, though it remains to be seen

how effective it will be in practice.

2.4 Similar Applications

2.4.1 Leap Trainer

‘Leap Trainer’, created by O’Leary [14], is a browser based gesture learning and recognition

framework for the Leap Motion. Developed in JavaScript, Leap Trainer allows users to create

and store gestures then replay them at will. The software also allows gesture data to be exported

for use in other applications. Leap Trainer implements gesture recognition through the use of

neural network-based, cross-correlation, and geometric template matching algorithms.

Unfortunately, from initial testing it appears the software struggles to discern between intricate

gestures such as those included in the BSL, frequently generating false positive results. This is

likely due to a low level of accuracy in the comparison algorithm. This could be improved by

comparing gestures more thoroughly, though it is unknown how severe an effect this would

have on the application’s performance.

2.4.2 UNI

A commercial application, UNI, is currently in development and is scheduled to be released in

summer 2016 by MotionSavvy [12]. UNI bares similarities to the proposed application in that

it utilises the Leap Motion in order to translate gestures into spoken text. An included ‘crowd

11

sign’ library would allow users to add and share gestures with other users via a cloud based

dictionary system.

The software is closed source and based on a subscription model of $20 / month with an initial

up front cost. This severely limits further adaptation or extension by like-minded developers,

instead users are solely reliant on MotionSavvy to support the application in the future.

Unfortunately, with no demo or other proof of concept available, it’s unknown how well the

UNI will achieve the goals described on the website.

2.4.3 Similar Applications Summary

Although a fair amount of research has been carried out in this area, the number of applications

which are completed or significantly developed are scarce in comparison. The novelty of the

Leap Motion is likely a leading factor in this, as developers are mostly unfamiliar with the

device or are unwilling to commit resources to projects whilst the device is under continued

development.

The Leap Trainer functioned well for gestures which were widely varied, though struggled with

more complex gestures with less variance, which are more the case when dealing with sign

languages. The UNI claims to be specifically designed for use with sign languages, but at this

point has no tangible demo or examples of use.

The proposed application will therefore aim to address both of these shortcomings by providing

a gesture recognition interface which will support the use of more intricate gestures (to the best

of the Leap Motion’s capabilities). Additionally, the application should be readily available for

use without subscription models or other such limitations, in order to promote extensibility.

12

Chapter 3

Design

3.1 User Requirements
When considering the overall design of an application there are several sections which must be

considered. The first of which is the clear definition of user requirements. In software

development, a requirement is a “property that a system must contain or exhibit in order for it

to satisfy a user”. Before any implementation occurs it’s crucial to ensure these requirements

are clarified.

Requirements are grouped into two categories; functional and non-functional. The former

describes the features of a system (what it does) whereas the latter describes how the system

behaves (performance, reliability etc.). These requirements can be more easily identified via

the creation of use case diagrams (shown in figure 3.1) and use case tables (shown in figures

3.2, 3.3, and 3.4). Diagrams aim to visualize the relationships between users of a system and

possible use cases, as well as between use cases themselves. Use case tables specify the

function of each use case, but don’t consider their implementation.

Figure 3.1: Use case diagram

13

Figure 3.2: Scenario for the ‘View Hands’ use case

14

Figure 3.3: Scenario for the ‘Record Gestures’ use case

15

Figure 3.4: Scenario for the ‘Recognize Gestures’ use case

From the use case analysis above, a number of functional and non-functional user requirements

were established, as shown in tables 3.1 and 3.2, respectively.

Table 3.1: Functional user requirements

Requirement

ID

Requirement Specification

R1 The system shall display a real time interpretation of the user’s hands during

operation

R2 A user shall be able to record and store their own data for a given gesture

R3 The system shall recognize a gesture provided by a user

R4 The system shall present user feedback, a normalized score, based on the

similarity between a given gesture and stored gestures

Table 3.2: Non-functional user requirements

Requirement

ID

Requirement Specification

R5 The system’s real time display of a user’s hands shall be updated with a

latency of 5ms or less

R6 The recognition of gestures shall take no longer than 200ms to complete

16

R7 The system shall recognize gestures with an accuracy of at least 80%

R8 The system shall implement a simplistic user interface which doesn’t rely

on mouse or keyboard input and can be understood by a user within 5

minutes of use.

R9 The system shall have a reliability of 100%. (Should never crash or

otherwise exhibit failure)

Regarding R6, the time value was chosen based on a statistical analysis of the average human

reaction time from the human benchmark website [5]. The site currently holds records for

26,404,960 reaction time tests, with an average reaction time of 271ms. If we take into

consideration the additional overhead of other factors such as the Java VM and the screen

refresh rate then the time taken should be lower to compensate. Therefore it should be

reasonable to assume that users won’t notice a delay in the recognition of gestures provided

that it takes less than 200ms to complete.

3.2 User Interface Design
As the application will contain a user interface, it’s beneficial to draft initial design plans to get

a general idea of what the application’s appearance will be and how a user should be able to

interact with it. Looking back at the user requirements, R8 states that the system should be easy

to use without relying on a keyboard and mouse – in other words, the user should be able to

fully interact with the application through only the Leap Motion.

The Leap Motion documentation [8] provides a number of guidelines which describe how an

application interface should be designed in order for it to be suitable for Leap Motion

interaction. The page suggests that buttons on an application should be “large, well organized

and include a clear highlight/depressed state”. With this in mind, an initial menu design is

shown in figure 3.5.

Figure 3.5: Initial user interface design for application menu

17

The primary goal of the interface is simplicity. With a mouse it makes sense to have multiple

smaller buttons or sections in an application menu. With the Leap Motion’s much lower level

of precision this approach isn’t practical. Interactable buttons should be deliberately enlarged

to ensure they’re easy to press on the first try.

Additionally, buttons should provide some level of feedback when pressed, for example, by

changing colours or size. For the buttons in this application, as a user moves their finger a

button closer to the screen (whilst hovering over a button), the depth of the button should

decrease as if it were actually being pressed. This aids in informing the user when their actions

have an effect on the application’s state where it might otherwise be unclear.

Other aspects of the proposed application should follow this simplicity based design. The

application has a clear purpose of recognizing sign language gestures, it should therefore not

include any unnecessary features or additions which may confuse the user. Features can easily

be added at a later date if required - removing features is likely to be more difficult, however.

3.3 System Architecture

Considering the user requirements specified in the previous section, the application will consist

of three main subsystems:

 Leap Motion subsystem: Updates application with new hand position data as the

physical Leap Motion device captures it

 Visualization subsystem: Displays a visual interpretation of the current Leap Motion

data, providing the user with feedback of their actions

 Gesture subsystem: Handles storage and recognition of performed gestures

A high level overview of each of these subsystems is shown in figure 3.6. The diagram

highlights only which subsystems should be present within the application and how they should

be associated with one another, rather than how they should be implemented – at this stage in

the design process this information isn’t relevant.

18

Figure 3.6: Overview of subsystems within the application

Following on from this, figures 3.7, 3.8, and 3.9 show sequence diagrams representing the

series of events which take place in these subsystems. These aim to demonstrate how sections

of the application interact with one another through the exchange of messages over a period of

time. Three diagrams provide an overview of the process of displaying a user’s hand on screen,

recording a gesture, and recognising a gesture, respectively.

Figure 3.7: Sequence diagram representing the display of a user’s hand

19

Figure 3.8: Sequence diagram representing the recording of a gesture

Figure 3.9: Sequence diagram representing the recognition of a gesture

3.4 Platform Selection

Although the Leap Motion supports a number of languages through its API, the application is

intended to be developed in Java. Java was chosen primarily due to personal familiarity with

the syntax. As there are many new or unknown technologies which will be incorporated into

the application, using a familiar development language is an important first step towards

development.

20

Due to the application requirements, some form of graphical user interface (GUI) must be

included in order to represent hand motions captured by the Leap Motion. In the past, Java

applications have been known to use the Abstract Window Toolkit (AWT) or Swing in order

to render 2D and 3D graphical components.

More recently, JavaFX has been seen as a more appropriate choice due to its increased support

from Oracle. Additionally, compared with AWT and Swing, JavaFX features more consistency

as well as flexibility through the inclusion of improved event handling and animation

capabilities, both of which are required for some aspects of the application. With no substantial

prior knowledge of any Java based GUI libraries, I thought it to be most practical to begin

development using the most modern of the identified three.

21

Chapter 4

Implementation

4.1 Leap Motion Integration
The Leap Motion controller records tracking data in a series of frames. Each frame contains

the positions of any detected hands or other pointable objects. Frames can be acquired by

simply polling the device or via a call back method from an event listener which is assigned to

the device. In the latter case, the Leap Motion will create a new thread for each new frame, and

will pause execution until the current thread’s call back method has returned. This prevents an

occurrence of thread-flooding, where threads are created at a faster rate than the device is able

to process them.

Comparing the two integration choices, I found the second to be the most intuitive. The use of

the event listener allowed me to manipulate or store the current frame’s data without having to

consider the poll rate, which could in some cases be causing frames to be skipped, or duplicate

frames to be requested, depending on the rate of frame polling compared with the rate of frame

returns by the Leap Motion controller.

The Leap Motion is added to a Java application through the use of controller and listener

classes. The controller class is a representation of the device itself, and must be created before

any data can be retrieved from the Leap Motion. At this stage, the controller can be polled in

order to retrieve frames of tracking data but this is only appropriate for the first integration

choice as described above. The second choice requires the creation of a listener which is

associated with this controller.

The listener class defines a number of call back methods which are executed depending on the

status of the Leap Motion controller. For example, the method onConnect() will be executed

when the controller object connects to the Leap Motion software and the Leap Motion hardware

device is plugged in. The method we’re particularly interested in, however, is onFrame().

onFrame() is executed when a new frame of hand and finger data is available. This data can

then be stored or transferred as appropriate within a system. For the purposes of this

application, data is handled through the use of Platform.runLater() calls, which are described

in the following sub-section.

4.2 Graphical User Interface
The application’s GUI is handled by JavaFX, a library of graphics and media packages which

is written as a Java API, meaning it can be referenced from any standard Java based program.

The properties of JavaFX allow external devices such as the Leap Motion to be easily

incorporated within an application. An adapted schema from Vos [19] describes this

combination, as shown in figure 4.1.

22

Figure 4.1: Interaction between Leap Motion and JavaFX

From the above schema we can see a number of key aspects detailing the relationship between

JavaFX and the Leap Motion API. The physical Leap device is recognised by the operating

system through a Leap Motion service. This service is subsequently linked to an application

via the LeapJava.jar native library. This library allows use of the Leap’s API within Java code.

A listener class is extended using this API, containing one or more Platform.runLater() calls,

where each of which contains specific JavaFX code used to modify the properties of objects

rendered in the application window.

As described in Oracle’s documentation of JavaFX [13], a system using JavaFX will run two

or more of the following threads at any given time:

 JavaFX application thread: Primary thread used by JavaFX. Essentially any content

which can be seen by the user must be managed in this thread.

 Prism render thread: Allows the application to perform concurrent processing. While

one frame is being rendered, the next can be pre-processed to help off-load the work

required.

 Media thread: Runs in the background and synchronizes the latest frames using the

application thread.

With JavaFX, any property that modifies a window’s live content can only be changed through

a Platform.runLater() call – this ensures that these modifications only occur on the application

thread. The combination of this system and the Leap Motion listener lead to an approach where

each call of onFrame() on a listener includes one or more Platform.runLater() calls in order to

modify the content shown in the JavaFX window, either directly or indirectly. This ensures the

application runs safely in regards to multithreading so as not to attempt to modify values in

incorrect threads.

23

4.3 Hand Visualization
The inclusion of a visualization system to represent a user’s hands when they’re interacting

with the application was a crucial initial design consideration. The user should be able to see

their actions in real time, without having to swap between the Leap and the keyboard/mouse to

e.g. navigate through menus – or having no visual feedback from the Leap entirely.

The visualization is integrated through the use of a dedicated listener class (as described in

section 4.1) with a number of Platform.runLater() calls (as described in section 4.2). When

each new frame is received by the Leap controller, this listener’s onFrame() method checks the

content of the frame to find the number of hands (if any) within it. If there is at least one hand

visible in the frame, the listener creates an instance of a HandFX object and adds it to the

application scene in order to be displayed, all wrapped within a Platform.runLater() call – the

pseudocode of which is shown in figure 4.2.

onFrame(Controller controller)

1. Frame frame = controller.frame();

2. Platform.runLater(() -> { // code inside this block is ran on JavaFX main thread

3. if (frame contains hands) {

4. for each (leapHand in frame) {

5. handFX = new HandFX(); // initialize a new handFX object

6. handGroup.add(handFX); // add to application scene to display

7. handFX.update(leapHand); // update the handFX object with leap co-ordinates

8. }

9. });

Figure 4.2: Pseudocode of interaction between Leap Motion listener and application display

A HandFX object instance is a 3D representation of a user’s hand, generated by taking the raw

data from the Leap Motion and converting it into co-ordinates. These co-ordinates are

subsequently used to update the positions of groups of sphere and cylinder shapes, representing

a hand’s joints and bones respectively. This solution provides a 1 to 1 mapping of the Leap

Motion data to the application, meaning the user can be certain that what they see on the screen

is a true representation of what the Leap Motion ‘sees’ at any given time.

4.4 Gesture Recognition
The application builds on the work of Vatavu, et al. [17], using an adapted version of the $P

recognizer (discussed briefly in section 2.3.5). The algorithm is based on the idea of machine

learning, and was originally written in JavaScript and C# for use with handwriting recognition.

The code used has been converted to the Java syntax and modified to support points in three

dimensions in order to function correctly with the Leap Motion.

At its highest level, the $P is an “instance-based nearest neighbour classifier with a Euclidean

scoring function”. Breaking this down, the $P selects the most appropriate category for an

object, given a selection of objects, by calculating the Euclidean difference in positions

between all available objects in order to find the closest and hence the most likely match. The

24

$P is instance-based, meaning it compares a given unknown object against a set of known

objects which are stored in memory.

In machine learning, objects are grouped into specific ‘categories’ based on a number of their

‘features’. Features refer to the properties of the object which make it unique, compared with

other objects. In the context of the application, the features shown in table 4.1 are used to

distinguish gestures from one another.

Table 4.1: Hand features used for gesture recognition.

 Palm Fingers

Features used Stabilized palm position Finger direction

Palm normal Metacarpal start position

Palm direction Metacarpal end position

 Proximal end position

 Intermediate end position

 Distal end position

The meaning of each of these features is as follows:

 Stabilized palm position: The distance between the centre point of a hand’s palm and

the Leap Motion controller origin, in millimetres. Smoothing and stabilization is

applied to this value.

 Palm normal: A vector pointing in the same direction as the palm’s normal (orthogonal

to the palm). For example, if the hand is held flat the normal would point downwards.

 Palm direction: A vector pointing from the palm position towards the fingers.

 Finger direction: The direction in which the finger is pointing.

 Finger start position: The base of the bone, closest to the wrist.

 Finger end position: The end of the bone, closest to the fingertip.

Each position feature is highlighted in figure 4.3, a hand bone model from the Leap Motion

API page [7].

Figure 4.3: Bone model with highlighted position features

25

Gestures are recognized by the application implicitly based on a certain criteria. I had

considered to fire recognition events explicitly via input from the user (e.g. pressing the

spacebar to signal the start and stop points of a gesture) but felt that this would become

cumbersome to operate, more so in cases where the keyboard might be difficult to access or

not available entirely.

The criteria mentioned above is the velocity of each hand within the frame. When each new

frame of image data is received by the Leap Motion listener, the velocity of all detected hands

are checked – this is found by checking the velocity of the palm of the hand, as well as the

maximum velocity of each of the fingers on the hand. If this velocity is above a threshold (300

millimetres per second was chosen as the default value) then the listener will recognize that a

gesture is being performed. If this threshold is not met, the listener will instead recognize that

a ‘pose’ is being performed.

Although the BSL is usually referred to as a set of hand gestures, this isn’t necessarily the case

in practice. Figure 4.4 shows an example of the alphabet interpreted in BSL where this can be

seen more clearly. From the 26 letters of the English alphabet, only two (‘H’ and ‘J’) involve

any hand motion. The majority of letters involve the hands remaining stationary in a specific

pose, hence the split of pose and gesture categories. If a given gesture includes any degree of

hand motion then it’s a waste of time to compare against any stored gestures which don’t, and

vice versa.

Figure 4.4: BSL interpretation of English alphabet

If a pose is detected, the listener will wait for 50 frames. If the hand’s velocity remains below

the motion velocity threshold for the entire 50 frames, a single frame will be captured to

represent this pose. This frame is stored as a Gesture object in-memory, containing each of the

features described in Table 4.1.

The process is essentially identical when considering a gesture which contains motion, such as

for the ‘H’ or ‘J’ letters – for each frame that the hand’s velocity is above the threshold, a frame

26

is recorded. If at least 10 frames are recorded in succession the gesture is considered to be valid.

In the case of motion gestures, recognition will trigger once the hand’s velocity eventually falls

below the threshold. In theory this allows for gestures which continue for an indefinite length

of time, though in the case of the BSL they typically last a second or two at most.

4.5 Gesture Comparison

4.5.1 Adaptation of the P-Dollar Recognizer

As previously mentioned in subsection 2.3.3, The P-Dollar Recognizer ($P) is an algorithm

originally designed to facilitate the recognition of handwriting (2D) gestures. Whilst

conducting background research in the area of gesture recognition, my thoughts were that the

$P would be reasonably straightforward to adapt for use with 3D gestures.

The standard $P algorithm treats a given 2D gesture as a series of evenly spaced points on a

flat plane (the authors use the term ‘point-cloud’, hence the algorithm name). Each point is

assigned a stroke ID, assigned depending on the current pen stroke – i.e. the first pen stroke

would generate a stroke ID of 1 for all points it created, and so on.

In order to support 3D gestures, the algorithm was adapted to include the z-axis in any

calculations which previously included both the x and y axis. The problem with this approach,

however, is that we’re no longer dealing with points from single pen strokes as with a

handwriting gesture – instead we have points from multiple hands, fingers, bones etc., we

therefore can’t apply this idea of stroke IDs. This issue was addressed by assigning the same

stroke ID to all generated points – not the optimal solution but given that the algorithm wasn’t

designed for use with 3D data, these kinds of problems were to be expected. Assigning a single

stroke ID to all points in a gesture had no discernible effect on the recognition outcome.

From the testing conducted throughout the development of the application, I found that simply

recording the positions of finger tips, as we would record the position of the pen tip in a 2D

gesture, would result in highly inaccurate gesture comparisons. With a 3D gesture we must

consider a number of other factors, rather than just these fingertip points. This was addressed

by storing additional features for each gesture, as previously shown in table 4.1.

There is the potential to store further feature data for a given gesture in order to improve the

accuracy of gesture recognition. Unfortunately we’re essentially stuck in this regard as we’re

reliant on the Leap Motion’s API, which is currently lacking in terms of available data which

can be extracted from a given image frame.

4.5.2 Normalization

Before a given gesture can be compared against a saved gesture, they must both be normalized.

This helps to ensure that fair and accurate comparisons are made between all gestures when

determining a match. Gestures undergo a series of three normalization steps before they are

compared. To increase comparison performance, all stored gestures are normalized between

being loaded from file and stored in memory, whereas new or unknown gestures are normalized

lazily (immediately prior to being passed to the comparison algorithm).

27

When dealing with gestures, it’s likely that they won’t always be performed in the same

position. The feature values composing each gesture are therefore translated to an origin of (0,

0, 0). This is otherwise known as translating to a known origin.

Additionally, the actual size of the users hands must be considered – gestures performed with

varying hand sizes may not contain the same feature values. Points are therefore rescaled in the

range [0-1].

Finally, each gesture is resampled to a specific number of points. This is helpful when dealing

with gestures that contain varying amounts of motion, as it wouldn’t be accurate to compare

one gesture that lasts 5 seconds against another that lasts 10 seconds, for example. Gestures

that are comprised of a single frame of hand data are also resampled to the same number of

points but remain essentially unchanged as far as comparison is concerned.

A single frame of a gesture using two hands contains 3 features for each palm, and 6 features

for each finger, totalling 66 feature points. Considering the rate at which frames are captured

by the Leap Motion, the number of feature points can quickly increase into the 1000s for

gestures lasting only a few seconds. This is therefore an additional performance measure to

improve the time taken to compare these types of gestures.

4.5.3 Machine Learning

Gestures are evaluated via the sum of the Euclidean distance between each of their feature

points. For a given point in a given unknown gesture, the distance is calculated to all other

points in a given stored, known gesture until the closest point is found. This process repeats

until all point distances have been found and recorded. This is then repeated for all stored

gestures - and the gesture with the smallest overall distance is returned as the closest match to

the unknown gesture.

Machine learning is relevant here as it relates to the idea of an algorithm becoming ‘better’, or

more accurate, over time, provided it is continually supplied with new data. Any data that is

provided to the algorithm (when not actively used) is known as training data. Each set of

training data will contain a number of feature values comprising an object, as well as a specific

label which categorizes the object. The algorithm should then be able to categorize unknown

objects based on its knowledge of this training data. This process is otherwise known as

supervised learning.

For example, supposing a gesture for the letter ‘A’ is stored with feature point values X, Y, and

Z. If we then wanted to recognize this letter we would need to provide a gesture containing

these same feature values, or values which were closer to these than to those of any other

gesture.

If we then added an extra recording of the letter ‘A’ with feature values X+1, Y+1, and Z+1,

there would be a wider degree of tolerance for any provided gesture to match it. We might

subsequently perform the gesture for ‘A’ slightly differently than our first recording, but closer

to our second recording (e.g. X+2, Y+2, Z+2) – in that case a match could still be generated,

which might not otherwise have been the case.

An algorithm which can learn based on input is therefore crucial to the success of applications

which rely on this kind of pattern matching or differentiation. As the number of possible

28

categories increases, having more samples of each category should, in theory, greatly improve

the accuracy of recognition.

4.6 Application UML Diagram
Figure 4.5 shows a more technical overview of the complete application. This helps to clarify

the relationships between classes, as well as the data and features each class contains.

The diagram is split around the ‘Menu’ class which handles the rendering of the application’s

main menu and initializes the Leap Motion for use. This can therefore be considered the main

class of the application, after first being initialized by the ‘Driver’ class.

The left side of the diagram relates to the visualization of hands within the application – the

primary class being ‘HandFX’ which controls the positions of detected hands and loads the

shapes representing the hand via the ‘ShapeCreator’ helper class, receiving updates from an

associated ‘LeapListener’ instance. An additional ‘LeapButton’ class handles the creation of

GUI buttons which are designed to be interacted with using only the Leap Motion, satisfying a

criteria of the application’s design specification.

The right side of the diagram focuses on the recording and recognition of gestures, with each

containing an associated GUI and Leap Motion listener class. All gestures are categorized as

an instance of the ‘Gesture’ class, with each gesture being composed of an array of ‘Point’

objects. Each point represents a feature of the gesture, as described in table 4.1. The recognizer

calls the $P in order to generate gesture matches, returning the result in a ‘Recognizer Results’

object which is forwarded to the GUI in order to be displayed.

29

Figure 4.5: Application UML class diagram

30

Chapter 5

The System in Operation

5.1 Initial Application State
Upon starting the application, the window displays the content shown in figure 5.1. This screen

acts as a main menu of the application, allowing access to the recognition and calibration

screens. The user is able to access either of these screens by making a tap motion with their

hand in the Leap Motion controller’s field of view, as if they were actually pressing the button.

As discussed in chapter 3, I had aimed to design the user interface to be over-simplistic in order

to promote ease of use with the Leap Motion.

Figure 5.1: Application when it is first opened, with no user input

5.2 Hand Enters Field Of View
When a hand enters the Leap Motion’s field of view, a skeletal model is shown in the

application window, as seen in figure 5.2. This model mimics the motion of the user’s hand in

a 1 to 1 fashion. A side effect of this is that any blemishes in the Leap Motion’s accuracy are

also represented in the application. For example, if a hand is unable to be correctly identified

by the Leap Motion it will appear distorted in the application. This is beneficial as it highlights

cases where the Leap Motion is at fault, rather than the user.

31

Figure 5.2: Application state when a hand enters the field of view of the Leap Motion.

5.3 Recognition
When the user touches the left-most ‘recognition’ button, the screen shown in figure 5.3 will

be displayed. The user is asked to perform a given gesture from the set of all English alphabet

letters. When a gesture is performed, the closest match and associated accuracy score is

displayed to the user.

For each successful gesture match, the score value shown in the top-right is increased by 10.

The goal is to correctly match the most amount of gestures within the time limit provided. As

shown in figure 5.3, the user was asked to perform a ‘C’ gesture and upon recognition the

application displays a similarity rating of 66%.

The objective of this section is to provide an example as to how gesture recognition could be

integrated into an application. There are of course a variety of uses which could be expanded

upon but this provides a useful starting point and proof of concept.

32

Figure 5.3: Application state when the ‘recognition’ button is pressed

5.4 Final Score
When the timer expires, the user is shown their final score, as seen in figure 5.4. This screen

remains for 5 seconds before returning the user to the main menu screen.

This score is derived from the number of gestures which were successfully matched by the user

within the time limit, with each correct gesture match granting 10 points. In the figure below,

the user correctly matched 3 gestures and was therefore presented with a final score of 30.

Figure 5.4: Application state when recognition timer expires

33

5.5 Calibration
When the user touches the right-most ‘calibration’ button, the screen shown in figure 5.5 is

displayed. Calibration is a means of improving the application’s recognition via a set of

gestures which are categorized from A through Z. For each alphabet letter, an image is

displayed in the centre-top of the screen, displaying its recognized BSL equivalent. Users are

able to perform their own gestures for each letter if desired, the image only serves as a

suggestion. Additional labelled sets added in this manner improve the accuracy of the

recognition algorithm as there is a wider variance of objects to select for each given category.

The user is given a three second countdown timer before recording begins, at which point they

are able to store a gesture. Upon successful storage of a gesture, the application will move onto

the next letter and the gesture guidance image will update accordingly. When the last letter (Z)

has been recorded, the application automatically returns to the main menu.

The implemented system provides a degree of flexibility as well as extensibility. For example,

users may wish to record gestures for words from a dictionary list as well as the alphabet letters

– this is possible by adding additional word sources to the system. The only limitation in this

case is the scope of the Leap Motion’s recognition capabilities with regard to gestures that

include the face or body etc.

Figure 5.5: Application state when the ‘calibration’ button is pressed

34

Chapter 6

Testing and Evaluation

6.1 Testing Procedure
Testing was conducted as a multi stage process in order to analyse every section of the

application independently.

The application was first checked against the user requirements specified in chapter 3, in order

to evaluate whether it was successful in satisfying all of the criteria or not.

The next test looked at the quality of the application’s recognition – this included accuracy,

time taken, and the effect of modifying the number of points used to represent a gesture.

The performance of both the Leap Motion device and the application in general were also

evaluated, as these could potentially be problematic in some cases.

Finally, feedback on the application was collected from a group of user participants and

subsequently evaluated.

6.2 User Requirements Analysis
Table 6.1 shows a range of tests completed in order to verify that the application satisfies each

of the user requirements originally specified in chapter 3. For each requirement, a test and an

accompanying result is shown.

Table 6.1: Tests and results against each user requirement

ID Requirement Test Result

R1 The system shall display a

real time interpretation of

the user’s hands during

operation

When the user’s hand enters

the Leap Motion

controller’s field of view, it

should be displayed in the

application

Successful – Hands are

displayed when

recognized by the Leap

Motion

R2 A user shall be able to

record and store their own

data for a given gesture

When performing a gesture

in the calibration section of

the application, the gesture

data should be stored to disk

Successful – the object

representing the gesture

is stored in a unique text

file on disk

R3 The system shall recognize

a gesture provided by a

user

When a gesture is

performed by a user in the

recognition section of the

application, the application

Successful – The closest

matching gesture is

shown on screen when a

gesture is performed

35

should present the user with

a recognition result

R4 The system shall present

user feedback, a

normalized score, based on

the similarity between a

given gesture and stored

gestures

When a gesture is

recognized, it should be

accompanied by a user score

Successful – A

percentage score in the

range 0%-100% is

returned with the closest

matching gesture,

signifying how close the

match is

R5 The system’s real time

display of a user’s hands

shall be updated with a

latency of 5ms or less

When a user’s hand is inside

the Leap Motion’s field of

view, the position update

method should return in less

than 5ms

Successful – The hand’s

update method takes

between 0.16ms and

0.53ms to return, well

below the requirement

target of 5ms

R6 The recognition of gestures

shall take no longer than

200ms to complete

When called, the gesture

recognition method should

return in less than 200ms

Successful – The

recognition method’s

average time taken was

14.57ms (Observed in

figure 6.2)

R7 The system shall recognize

gestures with an accuracy

of at least 80%

A given gesture should

result in a correct match at

least 80% of the time

Successful –

Recognition accuracy

rates of 100% were

achieved with 9 training

sets (Observed in figure

6.1)

R8 The system shall

implement a simplistic

interface which doesn’t

rely on mouse or keyboard

input and can be

understood by a user

within 5 minutes of use.

The application should be

fully navigable using only

the Leap Motion. User

testing should provide

insight into the interface’s

usability metric.

Successful – All sections

of the application can be

accessed through input

only from the Leap

Motion. All users who

provided feedback on the

application agreed it was

easy to understand and

use after 5 minutes of

use. (subsection 6.6).

R9 The system shall have a

reliability of 100%.

(Should never crash or

otherwise exhibit failure)

The application should not

crash, close, or fail when

performing any task

Successful – Application

will only close upon a

user’s request.

Application never

crashed or otherwise

showed signs of failure

throughout all

development and testing.

6.3 Recognition Analysis
Achieving a high recognition accuracy is the primary and most important goal of the

application. If the system is unable to distinguish between gestures then it’s not fit for purpose

no matter how well it performs in other areas.

36

Testing was carried out with a data set of 10 of each of the 26 BSL alphabet letters, for a total

of 260 samples. From this, 1 set of letters was used as the test data, with the remaining sets

used as training data. This test employs the theory of machine learning as described in

subsection 4.5.3.

The amount of training sets used in the tests varied from 1 set to 9 sets in order to check how

the accuracy of the recognition scaled as a result.

32 position points were used to store each gesture for every test, unless otherwise stated.

The time taken to generate each recognition was recorded by taking the time difference between

calling the recognition method and receiving a result. This time value was calculated via Java’s

nanoTime() method, then converted to milliseconds and rounded to 2 decimal places. It can be

assumed that this time value is therefore accurate to the nearest nanosecond.

Figure 6.1 shows the performance of the application when recognising all 26 letters of the test

set, with a varying number of training sets. Figure 6.2 shows the average time taken to complete

all 26 recognitions of the test set, with a varying number of training sets. Figures 6.3 and 6.4

show the performance and time taken (respectively) with a varying number of points, with both

using 9 training sets.

Figure 6.1: Recognition accuracy of all 26 alphabet letters, with a varying number of training

sets

58 58

69
73

88
92 92

96 100

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

R
ec

o
gn

it
io

n
 a

cc
u

ra
cy

 (
%

)

Number of training sets used

37

Figure 6.2: Average time taken to recognise all 26 alphabet letters, with a varying number of

training sets

Figure 6.3: Recognition performance (of all 26 alphabet letters) with a varying number of

points (9 training data sets used for each test)

2.33

3.98

6.09
6.6

8.11

9.72

11.39

12.94

14.57

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 t
im

e
ta

ke
n

 (
m

s)

Number of training sets used

50

69

88

96
100

92

100

0

20

40

60

80

100

120

2 4 8 16 32 64 128

R
ec

o
gn

it
io

n
 a

cc
u

ra
cy

 (
%

)

Number of points

38

Figure 6.4: Average time taken to recognise a set of all 26 alphabet letters with a varying

number of points (9 training data sets used for each test)

Firstly, looking at figure 6.1 – there’s a clear correlation between the system’s recognition

accuracy and the number of training sets used. As the number of training sets used increases,

the range of acceptable values for each feature of a gesture widens. This means a given gesture

has more margin for error when comparing to stored gestures. In comparison, with a single

training set there is only a single accepted value for each feature. As a result, the testing data

set has to match the training data set much more closely in order to generate a match. This is

particularly problematic when considering 3D gestures, where it’s unlikely that a given gesture

will be performed in exactly the same manner every time. Section 6.4 highlights the concerns

regarding the recognition of features themselves by the Leap Motion controller.

Figure 6.2 shows a linear increase in time taken (with the time taken with 3 sets being a slight

outlier) as the number of training data sets increases. It’s important to note that even with 9

training sets used, the recognition of all BSL letters is still completed in only 14.57ms. One

non-functional requirement of the application, R1.6, specified that recognition should take less

than 200ms, in this regard the application is therefore successful. s

Figures 6.3 and 6.4 show that using 32 position points provides the optimum result in terms of

accuracy and speed. Figure 6.4 shows a near exponential increase in time taken as the number

of points used is increased. This is most evident with at least 16 points being used (2.9ms),

compared with 32 points (14.59ms). Past this point the time taken increases at a much higher

rate.

If speed of recognition is more of a concern than absolute accuracy, the use of 16 points could

be considered as it still resulted in a 96% accuracy rating, meaning it misrepresented only a

single alphabet letter. The use of more than 32 points may only be relevant for data which

0.19 0.28 1.21 2.9
14.59

52.72

262.57

0

50

100

150

200

250

300

2 4 8 16 32 64 128

A
ve

ra
ge

 t
im

e
ta

ke
n

 (
m

s)

Number of points

39

contains more feature values as there is therefore more data available to manipulate. Splitting

features into too many points can actually have a negative effect, as seen with a 92%

recognition rate when using 64 points – not to mention that the time taken also greatly

increases.

6.4 Leap Motion Performance
The recognition algorithm is certainly capable of providing accurate results, given the

maximum accuracy of 100% as shown in figure 6.1. The issue lies in the capture of these test

gestures to recognise in the first place, due to the frequent detection problems that the Leap

Motion exhibits.

Unfortunately the Leap Motion software in general leaves a lot to be desired. The recent v2

firmware upgrade helped alleviate some issues through the inclusion of unique bone tracking,

but many more still remain. The Leap Motion recognizes hands based on a best guess system

so can very easily misrecognize hand motions – or fail to recognize them entirely. This is

evident in the case of this application due to the complex hand poses required to represent some

BSL letters.

Figure 6.5 shows three rows of gestures, with the gestures in each row bearing many

similarities. In practice a new user is unlikely to generate correct matches with these gestures

unless they make a deliberate attempt to exaggerate or modify the appearance of each. Looking

at the first row, ‘I’ and ‘O’, the features available from the Leap Motion API make it impossible

to reliably distinguish between them. If we consider the differences between them, ‘I’ requires

the user to raise the middle finger on their left hand against the index finger on their right hand.

‘O’ is nearly the same pose, the only difference being the left hand’s ring finger is raised

instead.

It’s a similar scenario when looking at the second row of figure 6.5. When we consider the

features that are recorded to represent each gesture, the majority are the same for both gestures.

Looking at ‘F’ and then ‘X’, the middle fingers on each hand are different but the palm and

other finger positions are very similar (clasped in the palm). A test gesture representing ‘F’ or

‘X’ is therefore close in distance to both ‘F’ and ‘X’. Ideally we would access to a larger variety

of feature types through the Leap Motion API, or store more features to represent each gesture

- though the latter would have a negative effect on the recognition speed.

The third row is related more to the lack of inference capability in the Leap Motion. When one

hand is above another, the Leap Motion is essentially blind to the motion of the upper hand due

to occlusion by the back of the lower hand. This makes it difficult to reliably recognize ‘L’,

‘M’, ‘N’, and ‘V’ without generating false positive results. I would usually have to make these

gestures several times and adjust finger positions slightly each time before the correct match is

given.

40

Figure 6.5: Frequently mismatched gestures

A second problem with the Leap Motion relates to its misrepresentation of hand position and

motion. Figure 6.6 shows two examples of letters which are difficult to recognize due to this.

As mentioned earlier, the Leap Motion functions using a best guess system. In some cases this

system will fail to accurately represent hand motions. This will cause hands to become distorted

or disappear entirely as the Leap Motion is unable to process them. This usually occurs when

hands are pressed close together, fingers are interleaved, or hands are placed on top of one

another.

The ‘G’ gesture in particular is difficult for the Leap Motion to recognise due to the complete

occlusion of the right hand when it is placed above the left hand. It usually requires several

attempts to perform the gesture. Rotating the hands backwards / forwards aids in recognition

by allowing more of the upper hand to be seen by the Leap Motion sensors - but then it is not

the true representation according to the BSL.

The ‘W’ gesture sees the fingers on both hands being interleaved / locked together. This makes

it difficult for the Leap Motion to distinguish which fingers belong to which hand and will

frequently result in the hands becoming undetected until they are separated again.

Figure 6.6: Frequently misrepresented gestures

Along with complex gestures, a few other factors are likely to cause problems for the device:

Firstly, lighting conditions must be considered due to the dual infrared cameras used to detect

the position of hands and fingers. External infrared light can and will be detected by the

cameras, resulting in reduced tracking performance.

Additionally, any objects close to the device will obscure the view of these tracking cameras,

also resulting in reduced performance.

41

Finally, the visible range of the tracking cameras may prove to be problematic. From my own

experience with the device, and from the device’s software control panel, the infrared cameras

will only reliably track hand positions at a maximum range of approximately 25cm. As hands

move further than this distance away from the device, they will typically be misrecognized by

the device, eventually becoming entirely undetected.

The combination of all of these factors means the environment in which the Leap Motion is

used must be carefully considered – particularly so when using an application which is

significantly reliant on the device’s recognition capabilities.

6.5 Application Performance
The performance of the application could be a concern for some users. The Leap Motion is

advertised as a compact, portable device – it would therefore not be unreasonable to assume

that some users will pair it with low-power laptops, netbooks and so on. Although the

application is relatively simple, it surprisingly has a fairly high resource usage.

Figure 6.7 shows the resource usage of a system on which the application was ran for

approximately 90 seconds. Before the application is started, we can see a system memory

(RAM) usage of 4646MB and a video memory (VRAM) usage of 757MB. After running the

application for around 90 seconds, we see a usage of 5114MB RAM and 1306MB VRAM, a

difference of 468MB and 549MB respectively. For systems which use a shared pool of VRAM

and RAM this could be problematic as the application therefore uses just over 1GB of

combined memory. With extended use this is liable to increase, depending on the efficiency of

the JVM’s garbage collection.

The application was tested on two platforms: The first, a desktop with 6GB VRAM and 8GB

RAM. The second, a laptop with 2GB combined memory. Throughout development the latter

system was noticeably slower, with hands appearing delayed as they moved across the

application window. Performance on the desktop, on the other hand, was never a problem. This

performance difference is evident in the provided video demo – the first system shown (laptop)

is noticeably slower than the second system (desktop). When looking at the extensibility of the

application, its resource usage should therefore be considered a potential limitation.

Figure 6.7: Comparison of video memory and system memory used after the application was

ran for approximately 90 seconds

42

6.6 User Feedback
Although the application has a deliberately simple user interface, there are other aspects of the

system on which user feedback is helpful. In order to gather feedback on the application’s

interface, and the application in general, the questionnaire shown in figure 6.7 was given to 5

participants. Each participant was asked to try the calibration and recognition features of the

application, without any external guidance. After 5 minutes of experience with the application,

participants were asked to answer the questionnaire and prompted for any additional feedback

if possible.

The questionnaire is based on the Likert scale question format [10]. The use of a Likert scale

allows users to select an option from a multiple point scale (in this case five) which represents

how much the user agrees or disagrees with a particular statement. The scale is best used when

measuring the attitudes of participants – this is therefore a good match for my study as I’m

most interested in what users opinions of the application are after having used it. From 1 to 5,

the Likert scale represents ‘Strongly Disagree’, ‘Disagree’, ‘Neutral’, ‘Agree’, and ‘Strongly

Agree’.

The results of the questionnaires are shown in Tables 6.2 and 6.3. Table 6.2 shows the Likert

responses, tallied for all users with an average response for each question. Table 6.3 shows the

additional feedback comments provided by each user. With the results of the user study stored,

each of the questionnaire statements are evaluated in turn in combination with the additional

feedback provided.

Firstly, statement 1, “The application was easy to understand and use”, considers the

accessibility of the application overall. When designing an application it’s important to

consider both experienced users and users who may have not come across a Leap Motion

device before. The application should therefore be straightforward and simple to use, without

having to consult walkthroughs or guides. Additionally, two users added relevant comments as

extra feedback – user 2 stated the UI was “simple” and “easy to use without experience”. User

5 stated the interface was “simple to use with just my hands”. The average response to this

statement was 4.4, representing an average opinion between ‘Agree’ and ‘Strongly Agree’.

Statement 2, “The interface buttons were easy to interact with”, looked at the responsiveness

of the interface, particularly the buttons used to manoeuvre around the application. This aspect

was probably the greatest unknown as I wasn’t sure whether users would approve of it over

simply clicking buttons with a mouse. As with statement 1, however, the average response was

4.4. This implies that users were satisfied with the Leap Motion based interface.

From observing users with the application, all managed to press each button on their first or

second attempt. Out of the 5 participants, every user attempted to press the buttons using the

Leap Motion first, rather than attempting to click it with a mouse. This suggests that each user

subconsciously expected the interface to function using the Leap Motion due to the reliance on

it for gesture recognition.

Statement 3, “Gesture recognition was always accurate”, was the lowest scoring statement with

an average response of 3.8. This was in line with my expectations as there were a number of

recognition issues with some gestures, as documented in section 6.4. Users found it most

difficult to match letters ‘I’ and ‘O’, with 2/5 users mentioning this in their additional feedback.

Other problematic gestures mentioned included ‘G’, ‘L’, ‘M’, N’, and ‘V’. One user mentioned

43

“Hands sometimes not representing my movements properly”, which was another issue noted

during development.

Statement 4, “Calibration of gestures was well implemented”, saw the highest average response

of 4.8. In addition, two users included additional feedback relating to this statement: “Images

were helpful for calibration”, and “Recording images were convenient to show me how to make

each gesture”. As none of the users had previous experience with a sign language, it was agreed

that the inclusion of a sample image for each gesture during recording was helpful as a guide.

Finally, statement 5, “The application performed well (No glitches, stutters, bugs, or lag)”,

considered the application’s stability. The statement was met with an average response of 4.0.

Throughout observation of each user, there were several times where the display of the user’s

hands did not fully match their actual positions, which occurred when fingers were pressed

together or interleaved. Unfortunately this is a limitation on the device’s capabilities so cannot

be easily resolved. The application as a whole, however, maintained a regular performance

level throughout each test, and did not close unless a request was explicitly sent by a user (e.g.

by closing the application window manually).

44

Figure 6.8: User feedback questionnaire

45

Table 6.2: Combined numeric results of user feedback questionnaires

Gesture Interpreter – Questionnaire Feedback

Question Response Given Average

Response 1 2 3 4 5

1 3 2 4.4

2 3 2 4.4

3 2 2 1 3.8

4 1 4 4.8

5 1 3 1 4.0

Table 6.3: Additional feedback provided in feedback questionnaire from each user (if any)

Gesture Interpreter – Additional Feedback

User Feedback Given

1 Images were helpful for calibration.

Difficulty making gestures I,O,G.

2 Simple UI, easy to use without experience.

Hands sometimes not representing my movements properly.

3 Had trouble with gestures like l, m, n and sometimes v all being

detected as each other.

4 None given

5 Hard to recognise gestures like I and O, kept getting confused

between them.

Hands glitching out when I moved sometimes.

Same problem with other gestures like M and N.

Interface was good to use with just my hands.

Recording images were convenient to show me how to make each

gesture.

46

Chapter 7

Conclusion

7.1 Aims Analysis
In the introductory chapter, a number of aims were defined for the project application. By

revisiting these it can be established whether or not the application is successful in fulfilling

its requirements. The aims were identified as follows:

 Record sign language gestures performed by a user by storing image data from a Leap

Motion device

 Recognise the gestures representing British Sign Language alphabet characters and

distinguish between them

 Given an unknown gesture by a user as input, output an identified matching gesture

with an associated similarity score

The first aim of being able to store gestures was successful. The application allows a user to

save either motion-based or stationary gestures for a given alphabet character. The user is able

to perform a gesture of their own choosing, or a copy of one provided in the example image

shown for each character.

The only restrictions on the user are the limitations of the Leap Motion device itself. The user

is limited to gestures which do not involve the face or body (these would not be detected by

the Leap Motion) and which can be fully captured within the Leap Motion’s field of view.

Gestures which are exceedingly similar to one another may prove difficult to distinguish during

recognition, due in part to the restricted set of features that can be extracted from a Leap Motion

data frame, but also due to the limitations of the Leap Motion software as covered in section

6.4.

The second aim looks at the explicit range of categories which can be observed by the

application. The system is successful in this regard as it is able to recognise all 26 BSL

representations of alphabet characters, though with some caveats. The hand positions of similar

gestures should be exaggerated in some way, for example performing the gesture at a different

angle than you normally would. The user must consider the degree of similarity of all gestures

they record using the application, in order to improve the reliability of the system’s recognition.

The third aim looks at providing feedback to a user in order to confirm that their actions are

recognized by the application. This third aim was also successful. When the application’s

recognition method is called, the returning object contains the closest matching gesture as well

as a similarity score. This score is calculated by normalizing the distance between this closest

matching gesture and the input gesture as a percentage value between 0 and 100. With this, the

user is provided with feedback on the quality of the recognition, as well as the recognition

itself.

47

7.2 Future Work
There are a number of areas which could be explored further in order to enhance both the

application in general and the accuracy of its recognition.

Data inference capabilities

In its current state, the Leap Motion uses a best-guess system in order to calculate the position,

rotation, and other characteristics of hands detected in its field of view. Improved inference

capabilities would allow the Leap Motion to make better judgements given a frame of data

which contains unclear hand positions. One example of this would be BSL gestures which

require hands or fingers to be stacked on top of each other. The upper hand is blocked by the

lower hand and thus the Leap Motion is unable to categorize the data.

A possible solution to this issue could be the use of multiple Leap Motion devices. One device

could be positioned below the hands as usual, with the other mounted above or to the side of

the interaction area. This would limit the portability of the application but may assist in

clarifying obscured hand positions. However, this would introduce an additional challenge of

synchronizing multiple Leap Motion devices as well as combining the data received by each

device on each new frame of image data.

Alternate recognition algorithm

As described in chapter 2, there are a number of machine learning algorithms currently

available and probably many more under development. Possible areas of improvement could

be found in the speed of the algorithm, as well as its performance with a restricted number of

training sets. As seen in chapter 6, the implemented algorithm required 9 training sets before

an accuracy rating of 100% was reached.

Ideally this would’ve been possible with only 1 training set, though this also relates to the

quality of the features that can be selected from the Leap Motion frame data – which although

reasonably varied at the moment, has the potential for further improvement.

The current recognition algorithm uses custom Point objects which represent co-ordinates in

3D space. The implementation of additional algorithms with support for more standard data

types (floats, booleans etc.) would allow for more varied features to be recorded for gestures

as they would not be limited to only types which could be easily converted to Point objects,

e.g. 3D vectors.

Improved Leap Motion software

As discussed in chapter 6, the Leap Motion’s current software and API is limited in some

regards. An expanded API with a wider range of hand feature tracking would allow for more

concise categorization of gestures. A major software update (V3), ‘Orion’, was released in a

beta state in February 2016 [9]. Orion boasts lower latency and better tracking of hands, as well

as reduced CPU usage.

Unfortunately the update has several known issues, including an issue with the tracking of

hands which overlap, stating that they’re currently handled worse in firmware V3 than in V2.

From experience with the new firmware, compared with V2, the inference capabilities of V3

are greatly reduced, so much so that it is not suitable to recognise gestures which contain any

degree of hand overlapping. Ultimately until this is resolved V3 isn’t suitable for use with this

48

application. For applications where hands aren’t required to overlap, Orion’s improved tracking

in all other aspects is definitely noticeable.

7.3 Lessons Learned
Probably the most substantial thing to take away from this project would be the experience of

working independently to solve a problem that I had no prior knowledge of, within a specific

time span.

The project required me to interact with a new device (Leap Motion) as well as several new

APIs (Leap Motion, JavaFX) and integrate them appropriately into a single application. Despite

some base knowledge of the Java programming language, it was the first time I had been

exposed to many new technologies at once and tasked with developing software using them all

appropriately.

Although hearing of terms such as machine learning in the past, the project required me to

explore the area in greater detail in order to implement a recognition algorithm which would

satisfy the primary objective of the application.

If I was to undertake the project again, I would definitely have started development earlier.

Looking back, I should’ve spent more time on the project over the summer break, so as to not

have to reduce the scope of the application in order to actually complete it in time. At the time

I did not consider the challenges I would face during development, and the impact these would

have on the project’s overall timeline.

With more time available I would’ve liked to expand on the uses of the application. Learning

a sign language is likely to be more effective with a variety of activities which the user can

participate in, all of which involve the recognition of gestures in some way. The current

implementation shows that gesture recognition is possible, but its utilization is more of a proof

of concept than anything else at this point.

7.4 Project Conclusion
Overall I consider the project to be a success. The application successfully met all of its original

aims, as well as all of the requirements I had originally defined. Undertaking the project helped

develop both my technical and development skills as well as other skills such as time

management and strategic planning. The completion of the application has shown that the Leap

Motion is certainly capable of gesture recognition, with the caveat that the device’s software

requires further development. The recent firmware V3 update, Orion, although currently in a

beta state, looks to be very promising for the Leap Motion’s future.

49

References

[1] Chen, M. (2013). Universal motion-based control and motion recognition. On line

publication, Georgia Institute of Technology,

http://www.dtic.mil/dtic/tr/fulltext/u2/a344219.pdf. Last accessed 1 November 2015.

[2] Chuan, C. H., Regina, E., & Guardino, C. (2014, December). American Sign Language

Recognition Using Leap Motion Sensor. In Machine Learning and Applications (ICMLA),

2014 13th International Conference on (pp. 541-544). IEEE, 2014.

[3] Etherington, D. (2013, April). Leap Motion Controller Ship Date Delayed Until July 22,

Due To A Need For A Larger, Longer Beta Test. Website,

http://techcrunch.com/2013/04/25/leap-motion-controller-ship-date-delayed-until-july-22-

due-to-a-need-for-a-larger-longer-beta-test/. Last accessed 4 December 2015.

[5] Human Benchmark. (2016) Reaction Time Statistics. Website,

http://www.humanbenchmark.com/tests/reactiontime/statistics. Last accessed 9 February

2016.

[6] Leap Motion. (2014) Leap Motion V2 Tracking Now in Public Developer Beta. Website,

http://blog.leapmotion.com/leap-motion-v2-tracking-now-in-public-developer-beta/. Last

accessed 16 November 2015.

[7] Leap Motion. (2015) Introducing The Skeletal Tracking Model. Website,

https://developer.leapmotion.com/documentation/java/devguide/Intro_Skeleton_API.html.

Last accessed 5 February 2016.

[8] Leap Motion. (2015) Menu Design Guidelines. Website,

https://developer.leapmotion.com/documentation/java/practices/Leap_Menu_Design_Guideli

nes.html. Last accessed 9 February 2016.

[9] Leap Motion. (2016). Orion Beta. Website, https://developer.leapmotion.com/orion. Last

accessed 17 February 2016.

[10] McLeod, S. A. (2008). Likert Scale. Retrieved from www.simplypsychology.org/likert-

scale.html. Last accessed 17 February 2016.

[11] Mohandes, M., Aliyu, S., & Deriche, M. (2014, June). Arabic sign language recognition

using the leap motion controller. In Industrial Electronics (ISIE), 2014 IEEE 23rd International

Symposium on (pp. 960-965). IEEE. Chicago, 2014.

[12] MotionSavvy. (2015) UNI. Website, http://www.motionsavvy.com/. Last accessed 9

October 2015.

[13] Oracle. (2014) JavaFX: Getting Started with JavaFX. Website,

https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-architecture.htm. Last accessed

2 February 2016.

[14] O’Leary R. (2013) LeapTrainer.js. GitHub repository,

https://github.com/roboleary/LeapTrainer.js. Last accessed 9 October 2015.

http://www.dtic.mil/dtic/tr/fulltext/u2/a344219.pdf
http://techcrunch.com/2013/04/25/leap-motion-controller-ship-date-delayed-until-july-22-due-to-a-need-for-a-larger-longer-beta-test/
http://techcrunch.com/2013/04/25/leap-motion-controller-ship-date-delayed-until-july-22-due-to-a-need-for-a-larger-longer-beta-test/
http://www.humanbenchmark.com/tests/reactiontime/statistics
http://blog.leapmotion.com/leap-motion-v2-tracking-now-in-public-developer-beta/
https://developer.leapmotion.com/documentation/java/devguide/Intro_Skeleton_API.html
https://developer.leapmotion.com/documentation/java/practices/Leap_Menu_Design_Guidelines.html
https://developer.leapmotion.com/documentation/java/practices/Leap_Menu_Design_Guidelines.html
https://developer.leapmotion.com/orion
http://www.simplypsychology.org/likert-scale.html
http://www.simplypsychology.org/likert-scale.html
http://www.motionsavvy.com/
https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-architecture.htm
https://github.com/roboleary/LeapTrainer.js

50

[15] Potter, L. E., Araullo, J., & Carter, L. (2013) The leap motion controller: a view on sign

language. In Proceedings of the 25th Australian Computer-Human Interaction Conference:

Augmentation, Application, Innovation, Collaboration (pp. 175-178). ACM, 2013.

[16] Signature. (2015) British Sign Language. Website, http://www.signature.org.uk/british-

sign-language. Last accessed 1 November 2015.

[17] Vatavu R.D., Anthony L., & Wobbrock J. O. (2012) Gestures as Point Clouds: A $P

Recognizer for User Interface Prototypes. On line publication, University of Washington,

http://faculty.washington.edu/wobbrock/pubs/icmi-12.pdf. Last accessed 13 October 2015.

[18] Vikram, S., Li, L., & Russell, S. (2013) Writing and sketching in the air, recognizing and

controlling on the fly. In CHI'13 Extended Abstracts on Human Factors in Computing Systems

(pp. 1179-1184). ACM, 2013.

[19] Vos, J. (2014) Leap Motion and JavaFX. Website,

http://www.oracle.com/technetwork/articles/java/rich-client-leapmotion-2227139.html. Last

accessed 2 February 2016.

[20] Weichert, F., Bachmann, D., Rudak, B., & Fisseler, D. (2013) Analysis of the Accuracy

and Robustness of the Leap Motion Controller. On line publication, PubMed Central,

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690061/pdf/sensors-13-06380.pdf. Last

accessed 16 October 2015.

http://www.signature.org.uk/british-sign-language
http://www.signature.org.uk/british-sign-language
http://faculty.washington.edu/wobbrock/pubs/icmi-12.pdf
http://www.oracle.com/technetwork/articles/java/rich-client-leapmotion-2227139.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3690061/pdf/sensors-13-06380.pdf

