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Chapter 1  

 

Introduction 

 
1.1 Motivation 
The project’s aim is to develop a gesture interpretation application, designed to recognise 

gestures used in the British Sign Language (BSL). The proposed application should accomplish 

this through the use of a motion tracking sensor device, the Leap Motion.  

Human-computer interaction has, for many years, been limited to keyboards and mouse 

devices. With the more recent development of smartphones and tablets we have seen numerous 

technological advancements utilising touch-screen based devices instead. 

Although these techniques are generally well implemented, it could be argued that they’re 

inherently unnatural when compared with real world, physical interaction. The problem lies in 

the fact that all of these methods require the use of some form of hardware peripheral in order 

to facilitate human-computer communication. 

The project’s proposed application aims to utilise gesture recognition in order to provide a 

more natural form of communication. Gesture recognition involves the use of a middleware 

(software bridge or interface) which captures and processes images in order to convert them 

from raw frame data input into an output understood by a computer. In the case of the Leap 

Motion, this middleware receives input via an associated hardware controller. The distinction 

between this device and a typical keyboard or mouse is that the former will automatically 

capture a user’s input, whereas the latter requires explicit user input i.e. pressing a key or 

moving a mouse.  

The area of gesture recognition is particularly relevant for deaf or otherwise hearing-impaired 

users who are reliant on gesture based languages such as the BSL. The task of learning a sign 

language may seem particularly daunting due to its differences compared with typical spoken 

languages. Children are said to grasp new languages faster than adults - yet those who are born 

deaf to hearing parents are likely to be delayed in their exposure to a sign language, during a 

time period where faster exposure is critical, due to parents’ lack of familiarity with them. A 

system designed to aid users in the understanding of a sign language would therefore be 

beneficial in cases such as this.   

The low cost of the Leap Motion device makes it viable for purchase by individual users for 

self-study with the proposed application, or for possible involvement with existing sign 

language courses in order to aid in streamlining the overall learning process. Education courses 

which rely on a sign language tutor could be augmented through the use of the application, 

with the tutor storing accepted gestures in the application before distributing it to students. In 

this way, students would gain independence in their learning and the ability to learn at their 

own pace.  
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1.2 Project Aims 
The aims of the project application as a whole are summarised as follows: 

 Record sign language gestures performed by a user by storing image data from a Leap 

Motion device 

 Recognise the gestures representing British Sign Language alphabet characters and 

distinguish between them 

 Given an unknown gesture by a user as input, output an identified matching gesture 

with an associated similarity score 

 

1.3 Report Overview 
The structure of the report is as follows:  

Chapter 1 discusses the problem domain and the proposed solution, including its aims.  

Chapter 2 analyses relevant studies and related work, as well as any similar applications.  

Chapter 3 identifies the user requirements for the application, and subsequently details 

appropriate architectural designs and an initial design for the application user interface.  

Chapter 4 covers the implementation of the application, providing an overview of the 

application layout and structure.  

Chapter 5 describes the operation of the application with the aid of screenshots.  

Chapter 6 explains the application test procedure and analyses the results of these tests, 

followed by an overall evaluation of the system. 

Chapter 7 concludes the report, summarising how well the application met its original aims, 

any identified limitations and scope for possible future work. The report ends with an overall 

conclusion the project.  
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Chapter 2 

 

Background 

 

2.1 Leap Motion 
The Leap Motion is a palm sized USB device which tracks hands and fingers using optical 

sensors and infrared lights. The device was first released by Leap Motion, Inc. in July 2013[3]. 

According to Weichert, et al [20], the Leap Motion is capable of recognising movement with 

an accuracy of 0.7mm. Comparable devices in a similar price range, such as the Microsoft 

Kinect, fared much worse in these tests, achieving an average accuracy of 1.5cm. Considering 

the reasonable success of the Kinect, the Leap Motion provides further innovation potential in 

the domain of gesture recognition.  

A major software update, firmware version 2, was released for the device in May 2014 [6]. The 

update claimed improved tracking performance and an enhanced API feature set through the 

inclusion of additional tracking capabilities for each individual bone in the hand, allowing for 

a level of tracking precision that was previously impossible with the device. The ability to track 

individual bones is a great benefit for sign language recognition purposes, and could be 

considered a necessity in order to track the difference between especially similar gestures.   

An image of the device is shown in figure 2.1. 

 

Figure 2.1: Leap Motion device 

One of the earliest studies relating to the use of the Leap Motion controller in order to detect 

sign language gestures was undertaken by Potter, et al [15]. The authors noted that although 

the controller showed potential, further development of the API was required. This was mainly 

due to inaccurate hand detection in certain scenarios such as pinching fingers together, 

interlocking hands or holding one hand above the other – all of which created anomalous data 

due to the obscuration of finger position information. It’s important to clarify that this study 

was undertaken using the device’s initial release firmware (V1) as opposed to the 

aforementioned updated firmware (V2). As such, it’s likely that the capabilities of the device 

will have since improved.  
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2.2 British Sign Language in Education 
BSL courses such as those offered by the nationally accredited Signature [16] award a number 

of qualifications ranging from ‘Level 1’ to ‘Level 6’, with each level requiring an incrementing 

range of known vocabulary required in order to qualify. Each level’s accompanying 

qualification is composed of a number of modules, where each of which focus on a particular 

subtopic e.g. ‘BSL conversational skills’ or ‘Understand varied British Sign Language in a 

range of work and social situations’. All of these modules include guided contact time as well 

as additional work intended for private study. There is also an accredited online learning 

resource available for an additional cost. 

The problem with this current system is that users new to the language are incredibly reliant 

on their tutors for guidance – online resources can help but only to a certain degree. Users may 

often need reassurance or additional guidance to ensure they are performing gestures correctly 

or to clarify gestures they’re unfamiliar with. The instant feedback provided by the proposed 

application would be a great benefit in this regard. The inclusion of such an application could 

prove helpful for both students undertaking these BSL courses, as well as the centres offering 

them, as tutors would be able to distribute their time more effectively.  

 

2.3 Gesture Recognition 
Probably the most important aspect of the system is its gesture recognition – as we’re dealing 

with data in real time, a suitable algorithm should calculate match results on the fly without 

causing delay or otherwise affecting the user when the application is running. Most approaches 

apply some form of machine learning on the Leap Motion frame data, or a specific subset of it. 

Generally it’s difficult to say with certainty that one algorithm is better than any other due to 

the variance of testing conditions, input data, sign language variant, and so on. Some feasible 

examples are shown in subsections 2.3.1 through 2.3.5. Following this, a conclusion of my 

findings is covered in subsection 2.3.6.  

 

2.3.1 Dynamic Time Warping 

The use of dynamic time warping (DTW) was explored by Vikram, et al [18]. The appeal of 

DTW is that it isn’t reliant on the time taken or speed of each input in order to accurately 

compare them – this is particularly useful with gestures which are often performed at varying 

speeds. The authors demonstrate how DTW could be applied to 2D handwriting gestures and 

suggested that it could be extended for use with 3D data, i.e. gestures. They conclude that the 

DTW approach used is suitable for real-time comparison but it remains to be seen whether that 

is still the case when dealing with the increased complexity of gestures compared with just 

handwriting.  

 

2.3.2 K-Nearest Neighbour & Support Vector Machines 

K-Nearest Neighbour (KNN) and Support Vector Machines (SVM) were proposed by Chuan, 

et al [2] as recognition algorithms for the American Sign Language using the Leap Motion. 

Tests were carried out using the 26 letters of the alphabet - results showed a recognition 

accuracy rate of 72.78% and 79.83% for the two methods, respectively. The authors mention 
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some possible reasons for the low accuracy with both algorithms; compared with the BSL 

alphabet, the ASL is signed using only one hand – as a result some letter representations are 

very close to one another which led to misclassifications of the Leap Motion data. The use of 

BSL with these methods could show improved results as all of its gestures require two hands 

to perform and are therefore more varied.  

 

2.3.3 $P Point-Cloud Recognizer 

The $P recognizer ($P), designed by Vatavu, et al [17], is another example of a gesture 

recognition algorithm. As described in the paper, the $P is “a 2-D gesture recognizer designed 

for rapid prototyping of gesture-based user interfaces”. The $P aims to overcome the complex 

task of matching user gestures by instead treating them as groups or “clouds” of points and 

evaluating each one in turn. Even the simplest of gestures could be created in many different 

ways depending on the properties of its strokes e.g. start and end points, order or time, and 

direction. The use of a point cloud helps remove any ambiguity from the gesture which 

simplifies comparison and recognition. According to the paper, the algorithm requires only 70 

lines of code to function and delivered over 99% accuracy in user-dependant testing.  

 

2.3.4 Hidden Markov Models 

Markov models, in particular Hidden Markov Models (HMM), are generally known for their 

use in pattern matching algorithms for speech recognition or typing prediction. A Markov 

model is a network of states with each state being connected to another with a specific weight 

or probability. In a Markov model based system the future state of the system is only dependant 

on its current state and the probability of the states it’s linked to. A HMM differs in that its 

state is partially obscured. An example of this could be found in a speech recognition system 

where we are able to observe a waveform of speech but the actual spoken words is hidden. This 

can be compared to a gesture recognition system where we are given the movement data of a 

gesture but the actual intended gesture is hidden. 

The use of a HMM was proposed by Chen [1] to support 2D and 3D motion recognition, 

achieving recognition rates of 91.9% in user-dependant testing and 96.9% in user- independent 

testing.  

 

2.3.5 Artificial Neural Networks 

The use of artificial neural networks (ANN) was previously proposed by Mohandes, et al [11], 

in particular a Multilayer Perceptron neural network (MLP) for use with the Arabic Sign 

Language (ArSL). The proposed system resulted in a classification accuracy of over 99%. An 

artificial neural network is a type of machine learning algorithm which bears similarity to the 

human brain in that it is composed of a series of simple processing units, neurons. These 

neurons are interconnected and each of these connections have a determined weight. The 

network learns from experience when provided with test data, calculating specific outputs for 

given inputs.  

It’s noted that the testing produced some erroneous results, similar to those found in the 

KNN/SVM with ASL testing described earlier. In this case this was due to fingers being 
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occluded by the palm of the hand or by other fingers during recognition, as opposed to gestures 

just being too similar to one another to discern between. The authors suggest the use of a second 

Leap Motion device positioned to the side of the user. Combined with the Leap Motion in front 

of the user this should theoretically resolve the observed issues, though further work has yet to 

be carried out. 

 

2.3.5 Research Summary 

The above research shows that a number of studies have been carried out relating to sign 

language recognition with the Leap Motion and similar devices, using a wide variety of gesture 

recognition algorithms, though with varying levels of success. 

As the project’s aims are similar to many of these studies, there’s not much value in simply 

repeating them as we can already view the results for a number of sign languages. Similarly, 

creating an entirely new machine learning algorithm is beyond the scope of the project, more 

so given that there is already a wide range of publically available algorithms. Instead, it’s worth 

considering identified approaches which have yet to be fully explored. 

In particular, the $P recognizer (as discussed in subsection 2.3.3) has yet to be incorporated 

into a BSL recognition application – therefore it would be beneficial to record the capabilities 

and performance of this algorithm in greater detail. The $P is based on a Euclidean distance 

scoring system, similar to that used by Vikram, et al [18] with dynamic time warping, which 

mentioned possible future work in the 3D domain. The characteristics of the $P suggest it 

should be plausible to modify it in order to support 3D gestures, though it remains to be seen 

how effective it will be in practice.  

 

2.4 Similar Applications 
 

2.4.1 Leap Trainer 

‘Leap Trainer’, created by O’Leary [14], is a browser based gesture learning and recognition 

framework for the Leap Motion. Developed in JavaScript, Leap Trainer allows users to create 

and store gestures then replay them at will. The software also allows gesture data to be exported 

for use in other applications. Leap Trainer implements gesture recognition through the use of 

neural network-based, cross-correlation, and geometric template matching algorithms. 

Unfortunately, from initial testing it appears the software struggles to discern between intricate 

gestures such as those included in the BSL, frequently generating false positive results. This is 

likely due to a low level of accuracy in the comparison algorithm. This could be improved by 

comparing gestures more thoroughly, though it is unknown how severe an effect this would 

have on the application’s performance. 

 

2.4.2 UNI 

A commercial application, UNI, is currently in development and is scheduled to be released in 

summer 2016 by MotionSavvy [12]. UNI bares similarities to the proposed application in that 

it utilises the Leap Motion in order to translate gestures into spoken text. An included ‘crowd 
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sign’ library would allow users to add and share gestures with other users via a cloud based 

dictionary system.  

The software is closed source and based on a subscription model of $20 / month with an initial 

up front cost. This severely limits further adaptation or extension by like-minded developers, 

instead users are solely reliant on MotionSavvy to support the application in the future. 

Unfortunately, with no demo or other proof of concept available, it’s unknown how well the 

UNI will achieve the goals described on the website. 

 

2.4.3 Similar Applications Summary 

Although a fair amount of research has been carried out in this area, the number of applications 

which are completed or significantly developed are scarce in comparison. The novelty of the 

Leap Motion is likely a leading factor in this, as developers are mostly unfamiliar with the 

device or are unwilling to commit resources to projects whilst the device is under continued 

development.  

The Leap Trainer functioned well for gestures which were widely varied, though struggled with 

more complex gestures with less variance, which are more the case when dealing with sign 

languages. The UNI claims to be specifically designed for use with sign languages, but at this 

point has no tangible demo or examples of use.  

The proposed application will therefore aim to address both of these shortcomings by providing 

a gesture recognition interface which will support the use of more intricate gestures (to the best 

of the Leap Motion’s capabilities). Additionally, the application should be readily available for 

use without subscription models or other such limitations, in order to promote extensibility.  
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Chapter 3 

 

Design 
 

3.1 User Requirements 
When considering the overall design of an application there are several sections which must be 

considered. The first of which is the clear definition of user requirements. In software 

development, a requirement is a “property that a system must contain or exhibit in order for it 

to satisfy a user”. Before any implementation occurs it’s crucial to ensure these requirements 

are clarified. 

Requirements are grouped into two categories; functional and non-functional. The former 

describes the features of a system (what it does) whereas the latter describes how the system 

behaves (performance, reliability etc.). These requirements can be more easily identified via 

the creation of use case diagrams (shown in figure 3.1) and use case tables (shown in figures 

3.2, 3.3, and 3.4). Diagrams aim to visualize the relationships between users of a system and 

possible use cases, as well as between use cases themselves. Use case tables specify the 

function of each use case, but don’t consider their implementation. 

 

 

 

Figure 3.1: Use case diagram 
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Figure 3.2: Scenario for the ‘View Hands’ use case 
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Figure 3.3: Scenario for the ‘Record Gestures’ use case 
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Figure 3.4: Scenario for the ‘Recognize Gestures’ use case 

 

From the use case analysis above, a number of functional and non-functional user requirements 

were established, as shown in tables 3.1 and 3.2, respectively. 

Table 3.1: Functional user requirements 

Requirement 

ID 

Requirement Specification 

R1 The system shall display a real time interpretation of the user’s hands during 

operation 

R2 A user shall be able to record and store their own data for a given gesture 

R3 The system shall recognize a gesture provided by a user 

R4 The system shall present user feedback, a normalized score, based on the 

similarity between a given gesture and stored gestures 

 

Table 3.2: Non-functional user requirements 

Requirement 

ID 

Requirement Specification 

R5 The system’s real time display of a user’s hands shall be updated with a 

latency of 5ms or less 

R6 The recognition of gestures shall take no longer than 200ms to complete 
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R7 The system shall recognize gestures with an accuracy of at least 80% 

R8 The system shall implement a simplistic user interface which doesn’t rely 

on mouse or keyboard input and can be understood by a user within 5 

minutes of use.  

R9 The system shall have a reliability of 100%. (Should never crash or 

otherwise exhibit failure) 

 

Regarding R6, the time value was chosen based on a statistical analysis of the average human 

reaction time from the human benchmark website [5]. The site currently holds records for 

26,404,960 reaction time tests, with an average reaction time of 271ms. If we take into 

consideration the additional overhead of other factors such as the Java VM and the screen 

refresh rate then the time taken should be lower to compensate. Therefore it should be 

reasonable to assume that users won’t notice a delay in the recognition of gestures provided 

that it takes less than 200ms to complete.  

 

3.2 User Interface Design 
As the application will contain a user interface, it’s beneficial to draft initial design plans to get 

a general idea of what the application’s appearance will be and how a user should be able to 

interact with it. Looking back at the user requirements, R8 states that the system should be easy 

to use without relying on a keyboard and mouse – in other words, the user should be able to 

fully interact with the application through only the Leap Motion.  

The Leap Motion documentation [8] provides a number of guidelines which describe how an 

application interface should be designed in order for it to be suitable for Leap Motion 

interaction. The page suggests that buttons on an application should be “large, well organized 

and include a clear highlight/depressed state”. With this in mind, an initial menu design is 

shown in figure 3.5.  

 

Figure 3.5: Initial user interface design for application menu 
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The primary goal of the interface is simplicity. With a mouse it makes sense to have multiple 

smaller buttons or sections in an application menu. With the Leap Motion’s much lower level 

of precision this approach isn’t practical. Interactable buttons should be deliberately enlarged 

to ensure they’re easy to press on the first try.  

Additionally, buttons should provide some level of feedback when pressed, for example, by 

changing colours or size. For the buttons in this application, as a user moves their finger a 

button closer to the screen (whilst hovering over a button), the depth of the button should 

decrease as if it were actually being pressed. This aids in informing the user when their actions 

have an effect on the application’s state where it might otherwise be unclear.   

Other aspects of the proposed application should follow this simplicity based design. The 

application has a clear purpose of recognizing sign language gestures, it should therefore not 

include any unnecessary features or additions which may confuse the user. Features can easily 

be added at a later date if required - removing features is likely to be more difficult, however.   

 

3.3 System Architecture 
 

Considering the user requirements specified in the previous section, the application will consist 

of three main subsystems: 

 Leap Motion subsystem: Updates application with new hand position data as the 

physical Leap Motion device captures it 

 Visualization subsystem: Displays a visual interpretation of the current Leap Motion 

data, providing the user with feedback of their actions  

 Gesture subsystem: Handles storage and recognition of performed gestures 

A high level overview of each of these subsystems is shown in figure 3.6. The diagram 

highlights only which subsystems should be present within the application and how they should 

be associated with one another, rather than how they should be implemented – at this stage in 

the design process this information isn’t relevant. 
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Figure 3.6: Overview of subsystems within the application 

 

Following on from this, figures 3.7, 3.8, and 3.9 show sequence diagrams representing the 

series of events which take place in these subsystems. These aim to demonstrate how sections 

of the application interact with one another through the exchange of messages over a period of 

time. Three diagrams provide an overview of the process of displaying a user’s hand on screen, 

recording a gesture, and recognising a gesture, respectively.  

 

Figure 3.7: Sequence diagram representing the display of a user’s hand 
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Figure 3.8: Sequence diagram representing the recording of a gesture 

 

 

Figure 3.9: Sequence diagram representing the recognition of a gesture 

 

3.4 Platform Selection 
 

Although the Leap Motion supports a number of languages through its API, the application is 

intended to be developed in Java. Java was chosen primarily due to personal familiarity with 

the syntax. As there are many new or unknown technologies which will be incorporated into 

the application, using a familiar development language is an important first step towards 

development.  
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Due to the application requirements, some form of graphical user interface (GUI) must be 

included in order to represent hand motions captured by the Leap Motion.   In the past, Java 

applications have been known to use the Abstract Window Toolkit (AWT) or Swing in order 

to render 2D and 3D graphical components.  

More recently, JavaFX has been seen as a more appropriate choice due to its increased support 

from Oracle. Additionally, compared with AWT and Swing, JavaFX features more consistency 

as well as flexibility through the inclusion of improved event handling and animation 

capabilities, both of which are required for some aspects of the application. With no substantial 

prior knowledge of any Java based GUI libraries, I thought it to be most practical to begin 

development using the most modern of the identified three. 
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Chapter 4 

 

Implementation 

 
4.1 Leap Motion Integration 
The Leap Motion controller records tracking data in a series of frames. Each frame contains 

the positions of any detected hands or other pointable objects. Frames can be acquired by 

simply polling the device or via a call back method from an event listener which is assigned to 

the device. In the latter case, the Leap Motion will create a new thread for each new frame, and 

will pause execution until the current thread’s call back method has returned. This prevents an 

occurrence of thread-flooding, where threads are created at a faster rate than the device is able 

to process them.  

Comparing the two integration choices, I found the second to be the most intuitive. The use of 

the event listener allowed me to manipulate or store the current frame’s data without having to 

consider the poll rate, which could in some cases be causing frames to be skipped, or duplicate 

frames to be requested, depending on the rate of frame polling compared with the rate of frame 

returns by the Leap Motion controller. 

The Leap Motion is added to a Java application through the use of controller and listener 

classes. The controller class is a representation of the device itself, and must be created before 

any data can be retrieved from the Leap Motion. At this stage, the controller can be polled in 

order to retrieve frames of tracking data but this is only appropriate for the first integration 

choice as described above. The second choice requires the creation of a listener which is 

associated with this controller. 

The listener class defines a number of call back methods which are executed depending on the 

status of the Leap Motion controller. For example, the method onConnect() will be executed 

when the controller object connects to the Leap Motion software and the Leap Motion hardware 

device is plugged in. The method we’re particularly interested in, however, is onFrame(). 

onFrame() is executed when a new frame of hand and finger data is available. This data can 

then be stored or transferred as appropriate within a system. For the purposes of this 

application, data is handled through the use of Platform.runLater() calls, which are described 

in the following sub-section.   

 

4.2 Graphical User Interface 
The application’s GUI is handled by JavaFX, a library of graphics and media packages which 

is written as a Java API, meaning it can be referenced from any standard Java based program. 

The properties of JavaFX allow external devices such as the Leap Motion to be easily 

incorporated within an application. An adapted schema from Vos [19] describes this 

combination, as shown in figure 4.1.  
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Figure 4.1: Interaction between Leap Motion and JavaFX 

 

From the above schema we can see a number of key aspects detailing the relationship between 

JavaFX and the Leap Motion API. The physical Leap device is recognised by the operating 

system through a Leap Motion service. This service is subsequently linked to an application 

via the LeapJava.jar native library. This library allows use of the Leap’s API within Java code. 

A listener class is extended using this API, containing one or more Platform.runLater() calls, 

where each of which contains specific JavaFX code used to modify the properties of objects 

rendered in the application window.    

 

As described in Oracle’s documentation of JavaFX [13], a system using JavaFX will run two 

or more of the following threads at any given time: 

 JavaFX application thread: Primary thread used by JavaFX. Essentially any content 

which can be seen by the user must be managed in this thread.  

 Prism render thread: Allows the application to perform concurrent processing. While 

one frame is being rendered, the next can be pre-processed to help off-load the work 

required.  

 Media thread: Runs in the background and synchronizes the latest frames using the 

application thread. 

 

With JavaFX, any property that modifies a window’s live content can only be changed through 

a Platform.runLater() call – this ensures that these modifications only occur on the application 

thread. The combination of this system and the Leap Motion listener lead to an approach where 

each call of onFrame() on a listener includes one or more Platform.runLater() calls in order to 

modify the content shown in the JavaFX window, either directly or indirectly. This ensures the 

application runs safely in regards to multithreading so as not to attempt to modify values in 

incorrect threads. 
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4.3 Hand Visualization 
The inclusion of a visualization system to represent a user’s hands when they’re interacting 

with the application was a crucial initial design consideration. The user should be able to see 

their actions in real time, without having to swap between the Leap and the keyboard/mouse to 

e.g. navigate through menus – or having no visual feedback from the Leap entirely. 

The visualization is integrated through the use of a dedicated listener class (as described in 

section 4.1) with a number of Platform.runLater() calls (as described in section 4.2). When 

each new frame is received by the Leap controller, this listener’s onFrame() method checks the 

content of the frame to find the number of hands (if any) within it. If there is at least one hand 

visible in the frame, the listener creates an instance of a HandFX object and adds it to the 

application scene in order to be displayed, all wrapped within a Platform.runLater() call – the 

pseudocode of which is shown in figure 4.2. 

 

onFrame(Controller controller) 

1. Frame frame = controller.frame(); 

2. Platform.runLater(() -> {                 // code inside this block is ran on JavaFX main thread 

3.     if (frame contains hands) { 

4.         for each (leapHand in frame) { 

5.             handFX = new HandFX();    // initialize a new handFX object 

6.             handGroup.add(handFX);     // add to application scene to display 

7.             handFX.update(leapHand);   // update the handFX object with leap co-ordinates 

8.         } 

9. }); 

Figure 4.2: Pseudocode of interaction between Leap Motion listener and application display 

 

A HandFX object instance is a 3D representation of a user’s hand, generated by taking the raw 

data from the Leap Motion and converting it into co-ordinates. These co-ordinates are 

subsequently used to update the positions of groups of sphere and cylinder shapes, representing 

a hand’s joints and bones respectively. This solution provides a 1 to 1 mapping of the Leap 

Motion data to the application, meaning the user can be certain that what they see on the screen 

is a true representation of what the Leap Motion ‘sees’ at any given time.  

 

4.4 Gesture Recognition 
The application builds on the work of Vatavu, et al. [17], using an adapted version of the $P 

recognizer (discussed briefly in section 2.3.5). The algorithm is based on the idea of machine 

learning, and was originally written in JavaScript and C# for use with handwriting recognition. 

The code used has been converted to the Java syntax and modified to support points in three 

dimensions in order to function correctly with the Leap Motion.  

At its highest level, the $P is an “instance-based nearest neighbour classifier with a Euclidean 

scoring function”. Breaking this down, the $P selects the most appropriate category for an 

object, given a selection of objects, by calculating the Euclidean difference in positions 

between all available objects in order to find the closest and hence the most likely match. The 
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$P is instance-based, meaning it compares a given unknown object against a set of known 

objects which are stored in memory. 

In machine learning, objects are grouped into specific ‘categories’ based on a number of their 

‘features’. Features refer to the properties of the object which make it unique, compared with 

other objects. In the context of the application, the features shown in table 4.1 are used to 

distinguish gestures from one another.  

Table 4.1: Hand features used for gesture recognition. 

 Palm Fingers 

Features used Stabilized palm position Finger direction 

Palm normal Metacarpal start position 

Palm direction Metacarpal end position 

 Proximal end position 

 Intermediate end position 

 Distal end position 

 

The meaning of each of these features is as follows: 

 Stabilized palm position: The distance between the centre point of a hand’s palm and 

the Leap Motion controller origin, in millimetres. Smoothing and stabilization is 

applied to this value.   

 Palm normal: A vector pointing in the same direction as the palm’s normal (orthogonal 

to the palm). For example, if the hand is held flat the normal would point downwards.  

 Palm direction: A vector pointing from the palm position towards the fingers. 

 Finger direction: The direction in which the finger is pointing. 

 Finger start position: The base of the bone, closest to the wrist. 

 Finger end position: The end of the bone, closest to the fingertip. 

Each position feature is highlighted in figure 4.3, a hand bone model from the Leap Motion 

API page [7].  

 

Figure 4.3: Bone model with highlighted position features 
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Gestures are recognized by the application implicitly based on a certain criteria. I had 

considered to fire recognition events explicitly via input from the user (e.g. pressing the 

spacebar to signal the start and stop points of a gesture) but felt that this would become 

cumbersome to operate, more so in cases where the keyboard might be difficult to access or 

not available entirely.  

The criteria mentioned above is the velocity of each hand within the frame. When each new 

frame of image data is received by the Leap Motion listener, the velocity of all detected hands 

are checked – this is found by checking the velocity of the palm of the hand, as well as the 

maximum velocity of each of the fingers on the hand. If this velocity is above a threshold (300 

millimetres per second was chosen as the default value) then the listener will recognize that a 

gesture is being performed. If this threshold is not met, the listener will instead recognize that 

a ‘pose’ is being performed. 

Although the BSL is usually referred to as a set of hand gestures, this isn’t necessarily the case 

in practice. Figure 4.4 shows an example of the alphabet interpreted in BSL where this can be 

seen more clearly. From the 26 letters of the English alphabet, only two (‘H’ and ‘J’) involve 

any hand motion. The majority of letters involve the hands remaining stationary in a specific 

pose, hence the split of pose and gesture categories. If a given gesture includes any degree of 

hand motion then it’s a waste of time to compare against any stored gestures which don’t, and 

vice versa.  

 

Figure 4.4: BSL interpretation of English alphabet 

 

If a pose is detected, the listener will wait for 50 frames. If the hand’s velocity remains below 

the motion velocity threshold for the entire 50 frames, a single frame will be captured to 

represent this pose. This frame is stored as a Gesture object in-memory, containing each of the 

features described in Table 4.1.  

The process is essentially identical when considering a gesture which contains motion, such as 

for the ‘H’ or ‘J’ letters – for each frame that the hand’s velocity is above the threshold, a frame 
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is recorded. If at least 10 frames are recorded in succession the gesture is considered to be valid. 

In the case of motion gestures, recognition will trigger once the hand’s velocity eventually falls 

below the threshold. In theory this allows for gestures which continue for an indefinite length 

of time, though in the case of the BSL they typically last a second or two at most.  

 

4.5 Gesture Comparison 
 

4.5.1 Adaptation of the P-Dollar Recognizer 

As previously mentioned in subsection 2.3.3, The P-Dollar Recognizer ($P) is an algorithm 

originally designed to facilitate the recognition of handwriting (2D) gestures. Whilst 

conducting background research in the area of gesture recognition, my thoughts were that the 

$P would be reasonably straightforward to adapt for use with 3D gestures.  

The standard $P algorithm treats a given 2D gesture as a series of evenly spaced points on a 

flat plane (the authors use the term ‘point-cloud’, hence the algorithm name). Each point is 

assigned a stroke ID, assigned depending on the current pen stroke – i.e. the first pen stroke 

would generate a stroke ID of 1 for all points it created, and so on.  

In order to support 3D gestures, the algorithm was adapted to include the z-axis in any 

calculations which previously included both the x and y axis. The problem with this approach, 

however, is that we’re no longer dealing with points from single pen strokes as with a 

handwriting gesture – instead we have points from multiple hands, fingers, bones etc., we 

therefore can’t apply this idea of stroke IDs. This issue was addressed by assigning the same 

stroke ID to all generated points – not the optimal solution but given that the algorithm wasn’t 

designed for use with 3D data, these kinds of problems were to be expected. Assigning a single 

stroke ID to all points in a gesture had no discernible effect on the recognition outcome.  

From the testing conducted throughout the development of the application, I found that simply 

recording the positions of finger tips, as we would record the position of the pen tip in a 2D 

gesture, would result in highly inaccurate gesture comparisons. With a 3D gesture we must 

consider a number of other factors, rather than just these fingertip points. This was addressed 

by storing additional features for each gesture, as previously shown in table 4.1. 

There is the potential to store further feature data for a given gesture in order to improve the 

accuracy of gesture recognition. Unfortunately we’re essentially stuck in this regard as we’re 

reliant on the Leap Motion’s API, which is currently lacking in terms of available data which 

can be extracted from a given image frame.  

 

4.5.2 Normalization 

Before a given gesture can be compared against a saved gesture, they must both be normalized. 

This helps to ensure that fair and accurate comparisons are made between all gestures when 

determining a match. Gestures undergo a series of three normalization steps before they are 

compared. To increase comparison performance, all stored gestures are normalized between 

being loaded from file and stored in memory, whereas new or unknown gestures are normalized 

lazily (immediately prior to being passed to the comparison algorithm).    
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When dealing with gestures, it’s likely that they won’t always be performed in the same 

position. The feature values composing each gesture are therefore translated to an origin of (0, 

0, 0). This is otherwise known as translating to a known origin. 

Additionally, the actual size of the users hands must be considered – gestures performed with 

varying hand sizes may not contain the same feature values. Points are therefore rescaled in the 

range [0-1].  

Finally, each gesture is resampled to a specific number of points. This is helpful when dealing 

with gestures that contain varying amounts of motion, as it wouldn’t be accurate to compare 

one gesture that lasts 5 seconds against another that lasts 10 seconds, for example. Gestures 

that are comprised of a single frame of hand data are also resampled to the same number of 

points but remain essentially unchanged as far as comparison is concerned.  

A single frame of a gesture using two hands contains 3 features for each palm, and 6 features 

for each finger, totalling 66 feature points. Considering the rate at which frames are captured 

by the Leap Motion, the number of feature points can quickly increase into the 1000s for 

gestures lasting only a few seconds. This is therefore an additional performance measure to 

improve the time taken to compare these types of gestures.  

 

4.5.3 Machine Learning 

Gestures are evaluated via the sum of the Euclidean distance between each of their feature 

points. For a given point in a given unknown gesture, the distance is calculated to all other 

points in a given stored, known gesture until the closest point is found. This process repeats 

until all point distances have been found and recorded. This is then repeated for all stored 

gestures - and the gesture with the smallest overall distance is returned as the closest match to 

the unknown gesture. 

Machine learning is relevant here as it relates to the idea of an algorithm becoming ‘better’, or 

more accurate, over time, provided it is continually supplied with new data. Any data that is 

provided to the algorithm (when not actively used) is known as training data. Each set of 

training data will contain a number of feature values comprising an object, as well as a specific 

label which categorizes the object. The algorithm should then be able to categorize unknown 

objects based on its knowledge of this training data. This process is otherwise known as 

supervised learning.  

For example, supposing a gesture for the letter ‘A’ is stored with feature point values X, Y, and 

Z. If we then wanted to recognize this letter we would need to provide a gesture containing 

these same feature values, or values which were closer to these than to those of any other 

gesture.  

If we then added an extra recording of the letter ‘A’ with feature values X+1, Y+1, and Z+1, 

there would be a wider degree of tolerance for any provided gesture to match it. We might 

subsequently perform the gesture for ‘A’ slightly differently than our first recording, but closer 

to our second recording (e.g. X+2, Y+2, Z+2) – in that case a match could still be generated, 

which might not otherwise have been the case.  

An algorithm which can learn based on input is therefore crucial to the success of applications 

which rely on this kind of pattern matching or differentiation. As the number of possible 
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categories increases, having more samples of each category should, in theory, greatly improve 

the accuracy of recognition.   

 

4.6 Application UML Diagram 
Figure 4.5 shows a more technical overview of the complete application. This helps to clarify 

the relationships between classes, as well as the data and features each class contains.    

The diagram is split around the ‘Menu’ class which handles the rendering of the application’s 

main menu and initializes the Leap Motion for use. This can therefore be considered the main 

class of the application, after first being initialized by the ‘Driver’ class.  

The left side of the diagram relates to the visualization of hands within the application – the 

primary class being ‘HandFX’ which controls the positions of detected hands and loads the 

shapes representing the hand via the ‘ShapeCreator’ helper class, receiving updates from an 

associated ‘LeapListener’ instance. An additional ‘LeapButton’ class handles the creation of 

GUI buttons which are designed to be interacted with using only the Leap Motion, satisfying a 

criteria of the application’s design specification.  

The right side of the diagram focuses on the recording and recognition of gestures, with each 

containing an associated GUI and Leap Motion listener class.  All gestures are categorized as 

an instance of the ‘Gesture’ class, with each gesture being composed of an array of ‘Point’ 

objects. Each point represents a feature of the gesture, as described in table 4.1.  The recognizer 

calls the $P in order to generate gesture matches, returning the result in a ‘Recognizer Results’ 

object which is forwarded to the GUI in order to be displayed. 
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Figure 4.5: Application UML class diagram
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Chapter 5 

 

The System in Operation 

 
5.1 Initial Application State 
Upon starting the application, the window displays the content shown in figure 5.1. This screen 

acts as a main menu of the application, allowing access to the recognition and calibration 

screens. The user is able to access either of these screens by making a tap motion with their 

hand in the Leap Motion controller’s field of view, as if they were actually pressing the button. 

As discussed in chapter 3, I had aimed to design the user interface to be over-simplistic in order 

to promote ease of use with the Leap Motion.   

 

Figure 5.1: Application when it is first opened, with no user input 

 

5.2 Hand Enters Field Of View 
When a hand enters the Leap Motion’s field of view, a skeletal model is shown in the 

application window, as seen in figure 5.2. This model mimics the motion of the user’s hand in 

a 1 to 1 fashion. A side effect of this is that any blemishes in the Leap Motion’s accuracy are 

also represented in the application. For example, if a hand is unable to be correctly identified 

by the Leap Motion it will appear distorted in the application. This is beneficial as it highlights 

cases where the Leap Motion is at fault, rather than the user.  
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Figure 5.2: Application state when a hand enters the field of view of the Leap Motion. 

 

5.3 Recognition  
When the user touches the left-most ‘recognition’ button, the screen shown in figure 5.3 will 

be displayed. The user is asked to perform a given gesture from the set of all English alphabet 

letters. When a gesture is performed, the closest match and associated accuracy score is 

displayed to the user.  

For each successful gesture match, the score value shown in the top-right is increased by 10. 

The goal is to correctly match the most amount of gestures within the time limit provided. As 

shown in figure 5.3, the user was asked to perform a ‘C’ gesture and upon recognition the 

application displays a similarity rating of 66%.  

The objective of this section is to provide an example as to how gesture recognition could be 

integrated into an application. There are of course a variety of uses which could be expanded 

upon but this provides a useful starting point and proof of concept.  
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Figure 5.3: Application state when the ‘recognition’ button is pressed 

 

5.4 Final Score 
When the timer expires, the user is shown their final score, as seen in figure 5.4. This screen 

remains for 5 seconds before returning the user to the main menu screen.  

This score is derived from the number of gestures which were successfully matched by the user 

within the time limit, with each correct gesture match granting 10 points. In the figure below, 

the user correctly matched 3 gestures and was therefore presented with a final score of 30.  

 

Figure 5.4: Application state when recognition timer expires 
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5.5 Calibration 
When the user touches the right-most ‘calibration’ button, the screen shown in figure 5.5 is 

displayed. Calibration is a means of improving the application’s recognition via a set of 

gestures which are categorized from A through Z. For each alphabet letter, an image is 

displayed in the centre-top of the screen, displaying its recognized BSL equivalent. Users are 

able to perform their own gestures for each letter if desired, the image only serves as a 

suggestion. Additional labelled sets added in this manner improve the accuracy of the 

recognition algorithm as there is a wider variance of objects to select for each given category.  

The user is given a three second countdown timer before recording begins, at which point they 

are able to store a gesture. Upon successful storage of a gesture, the application will move onto 

the next letter and the gesture guidance image will update accordingly. When the last letter (Z) 

has been recorded, the application automatically returns to the main menu.  

The implemented system provides a degree of flexibility as well as extensibility. For example, 

users may wish to record gestures for words from a dictionary list as well as the alphabet letters 

– this is possible by adding additional word sources to the system. The only limitation in this 

case is the scope of the Leap Motion’s recognition capabilities with regard to gestures that 

include the face or body etc.  

 

 

Figure 5.5: Application state when the ‘calibration’ button is pressed 
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Chapter 6 

 

Testing and Evaluation 

 
6.1 Testing Procedure 
Testing was conducted as a multi stage process in order to analyse every section of the 

application independently.   

The application was first checked against the user requirements specified in chapter 3, in order 

to evaluate whether it was successful in satisfying all of the criteria or not.  

The next test looked at the quality of the application’s recognition – this included accuracy, 

time taken, and the effect of modifying the number of points used to represent a gesture. 

The performance of both the Leap Motion device and the application in general were also 

evaluated, as these could potentially be problematic in some cases.  

Finally, feedback on the application was collected from a group of user participants and 

subsequently evaluated. 

 

6.2 User Requirements Analysis 
Table 6.1 shows a range of tests completed in order to verify that the application satisfies each 

of the user requirements originally specified in chapter 3. For each requirement, a test and an 

accompanying result is shown.  

 

Table 6.1: Tests and results against each user requirement 

ID Requirement Test Result 

R1 The system shall display a 

real time interpretation of 

the user’s hands during 

operation 

When the user’s hand enters 

the Leap Motion 

controller’s field of view, it 

should be displayed in the 

application 

Successful – Hands are 

displayed when 

recognized by the Leap 

Motion 

R2 A user shall be able to 

record and store their own 

data for a given gesture 

When performing a gesture 

in the calibration section of 

the application, the gesture 

data should be stored to disk 

Successful – the object 

representing the gesture 

is stored in a unique text 

file on disk 

R3 The system shall recognize 

a gesture provided by a 

user 

When a gesture is 

performed by a user in the 

recognition section of the 

application, the application 

Successful – The closest 

matching gesture is 

shown on screen when a 

gesture is performed 
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should present the user with 

a recognition result 

R4 The system shall present 

user feedback, a 

normalized score, based on 

the similarity between a 

given gesture and stored 

gestures 

When a gesture is 

recognized, it should be 

accompanied by a user score 

Successful – A 

percentage score in the 

range 0%-100% is 

returned with the closest 

matching gesture, 

signifying how close the 

match is 

R5 The system’s real time 

display of a user’s hands 

shall be updated with a 

latency of 5ms or less 

When a user’s hand is inside 

the Leap Motion’s field of 

view, the position update 

method should return in less 

than 5ms 

Successful – The hand’s 

update method takes 

between 0.16ms and 

0.53ms to return, well 

below the requirement 

target of 5ms 

R6 The recognition of gestures 

shall take no longer than 

200ms to complete 

 

When called, the gesture 

recognition method should 

return in less than 200ms 

Successful – The 

recognition method’s 

average time taken was 

14.57ms (Observed in 

figure 6.2) 

R7 The system shall recognize 

gestures with an accuracy 

of at least 80% 

 

A given gesture should 

result in a correct match at 

least 80% of the time 

Successful – 

Recognition accuracy 

rates of 100% were 

achieved with 9 training 

sets (Observed in figure 

6.1) 

R8 The system shall 

implement a simplistic 

interface which doesn’t 

rely on mouse or keyboard 

input and can be 

understood by a user 

within 5 minutes of use. 

The application should be 

fully navigable using only 

the Leap Motion. User 

testing should provide 

insight into the interface’s 

usability metric.   

Successful – All sections 

of the application can be 

accessed through input 

only from the Leap 

Motion. All users who 

provided feedback on the 

application agreed it was 

easy to understand and 

use after 5 minutes of 

use. (subsection 6.6). 

R9 The system shall have a 

reliability of 100%. 

(Should never crash or 

otherwise exhibit failure) 

The application should not 

crash, close, or fail when 

performing any task 

Successful – Application 

will only close upon a 

user’s request. 

Application never 

crashed or otherwise 

showed signs of failure 

throughout all 

development and testing.  

 

6.3 Recognition Analysis 
Achieving a high recognition accuracy is the primary and most important goal of the 

application. If the system is unable to distinguish between gestures then it’s not fit for purpose 

no matter how well it performs in other areas.  
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Testing was carried out with a data set of 10 of each of the 26 BSL alphabet letters, for a total 

of 260 samples. From this, 1 set of letters was used as the test data, with the remaining sets 

used as training data. This test employs the theory of machine learning as described in 

subsection 4.5.3.  

The amount of training sets used in the tests varied from 1 set to 9 sets in order to check how 

the accuracy of the recognition scaled as a result.  

32 position points were used to store each gesture for every test, unless otherwise stated.  

The time taken to generate each recognition was recorded by taking the time difference between 

calling the recognition method and receiving a result. This time value was calculated via Java’s 

nanoTime() method, then converted to milliseconds and rounded to 2 decimal places. It can be 

assumed that this time value is therefore accurate to the nearest nanosecond.  

Figure 6.1 shows the performance of the application when recognising all 26 letters of the test 

set, with a varying number of training sets. Figure 6.2 shows the average time taken to complete 

all 26 recognitions of the test set, with a varying number of training sets. Figures 6.3 and 6.4 

show the performance and time taken (respectively) with a varying number of points, with both 

using 9 training sets. 

 

 

Figure 6.1: Recognition accuracy of all 26 alphabet letters, with a varying number of training 

sets 
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Figure 6.2: Average time taken to recognise all 26 alphabet letters, with a varying number of 

training sets 

 

 

Figure 6.3: Recognition performance (of all 26 alphabet letters) with a varying number of 

points (9 training data sets used for each test) 
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Figure 6.4: Average time taken to recognise a set of all 26 alphabet letters with a varying 

number of points (9 training data sets used for each test) 

 

Firstly, looking at figure 6.1 – there’s a clear correlation between the system’s recognition 

accuracy and the number of training sets used. As the number of training sets used increases, 

the range of acceptable values for each feature of a gesture widens. This means a given gesture 

has more margin for error when comparing to stored gestures. In comparison, with a single 

training set there is only a single accepted value for each feature. As a result, the testing data 

set has to match the training data set much more closely in order to generate a match. This is 

particularly problematic when considering 3D gestures, where it’s unlikely that a given gesture 

will be performed in exactly the same manner every time. Section 6.4 highlights the concerns 

regarding the recognition of features themselves by the Leap Motion controller.  

Figure 6.2 shows a linear increase in time taken (with the time taken with 3 sets being a slight 

outlier) as the number of training data sets increases. It’s important to note that even with 9 

training sets used, the recognition of all BSL letters is still completed in only 14.57ms. One 

non-functional requirement of the application, R1.6, specified that recognition should take less 

than 200ms, in this regard the application is therefore successful. s 

Figures 6.3 and 6.4 show that using 32 position points provides the optimum result in terms of 

accuracy and speed. Figure 6.4 shows a near exponential increase in time taken as the number 

of points used is increased. This is most evident with at least 16 points being used (2.9ms), 

compared with 32 points (14.59ms). Past this point the time taken increases at a much higher 

rate.  

If speed of recognition is more of a concern than absolute accuracy, the use of 16 points could 

be considered as it still resulted in a 96% accuracy rating, meaning it misrepresented only a 

single alphabet letter. The use of more than 32 points may only be relevant for data which 
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contains more feature values as there is therefore more data available to manipulate. Splitting 

features into too many points can actually have a negative effect, as seen with a 92% 

recognition rate when using 64 points – not to mention that the time taken also greatly 

increases.  

 

6.4 Leap Motion Performance 
The recognition algorithm is certainly capable of providing accurate results, given the 

maximum accuracy of 100% as shown in figure 6.1. The issue lies in the capture of these test 

gestures to recognise in the first place, due to the frequent detection problems that the Leap 

Motion exhibits. 

Unfortunately the Leap Motion software in general leaves a lot to be desired. The recent v2 

firmware upgrade helped alleviate some issues through the inclusion of unique bone tracking, 

but many more still remain. The Leap Motion recognizes hands based on a best guess system 

so can very easily misrecognize hand motions – or fail to recognize them entirely. This is 

evident in the case of this application due to the complex hand poses required to represent some 

BSL letters. 

Figure 6.5 shows three rows of gestures, with the gestures in each row bearing many 

similarities. In practice a new user is unlikely to generate correct matches with these gestures 

unless they make a deliberate attempt to exaggerate or modify the appearance of each. Looking 

at the first row, ‘I’ and ‘O’, the features available from the Leap Motion API make it impossible 

to reliably distinguish between them. If we consider the differences between them, ‘I’ requires 

the user to raise the middle finger on their left hand against the index finger on their right hand. 

‘O’ is nearly the same pose, the only difference being the left hand’s ring finger is raised 

instead.  

It’s a similar scenario when looking at the second row of figure 6.5. When we consider the 

features that are recorded to represent each gesture, the majority are the same for both gestures. 

Looking at ‘F’ and then ‘X’, the middle fingers on each hand are different but the palm and 

other finger positions are very similar (clasped in the palm). A test gesture representing ‘F’ or 

‘X’ is therefore close in distance to both ‘F’ and ‘X’. Ideally we would access to a larger variety 

of feature types through the Leap Motion API, or store more features to represent each gesture 

- though the latter would have a negative effect on the recognition speed.  

The third row is related more to the lack of inference capability in the Leap Motion. When one 

hand is above another, the Leap Motion is essentially blind to the motion of the upper hand due 

to occlusion by the back of the lower hand. This makes it difficult to reliably recognize ‘L’, 

‘M’, ‘N’, and ‘V’ without generating false positive results. I would usually have to make these 

gestures several times and adjust finger positions slightly each time before the correct match is 

given.  
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Figure 6.5: Frequently mismatched gestures 

 

A second problem with the Leap Motion relates to its misrepresentation of hand position and 

motion. Figure 6.6 shows two examples of letters which are difficult to recognize due to this. 

As mentioned earlier, the Leap Motion functions using a best guess system. In some cases this 

system will fail to accurately represent hand motions. This will cause hands to become distorted 

or disappear entirely as the Leap Motion is unable to process them. This usually occurs when 

hands are pressed close together, fingers are interleaved, or hands are placed on top of one 

another.  

The ‘G’ gesture in particular is difficult for the Leap Motion to recognise due to the complete 

occlusion of the right hand when it is placed above the left hand. It usually requires several 

attempts to perform the gesture. Rotating the hands backwards / forwards aids in recognition 

by allowing more of the upper hand to be seen by the Leap Motion sensors - but then it is not 

the true representation according to the BSL.  

The ‘W’ gesture sees the fingers on both hands being interleaved / locked together. This makes 

it difficult for the Leap Motion to distinguish which fingers belong to which hand and will 

frequently result in the hands becoming undetected until they are separated again.  

 

Figure 6.6: Frequently misrepresented gestures 

 

Along with complex gestures, a few other factors are likely to cause problems for the device: 

Firstly, lighting conditions must be considered due to the dual infrared cameras used to detect 

the position of hands and fingers. External infrared light can and will be detected by the 

cameras, resulting in reduced tracking performance.  

Additionally, any objects close to the device will obscure the view of these tracking cameras, 

also resulting in reduced performance.   
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Finally, the visible range of the tracking cameras may prove to be problematic. From my own 

experience with the device, and from the device’s software control panel, the infrared cameras 

will only reliably track hand positions at a maximum range of approximately 25cm. As hands 

move further than this distance away from the device, they will typically be misrecognized by 

the device, eventually becoming entirely undetected.  

The combination of all of these factors means the environment in which the Leap Motion is 

used must be carefully considered – particularly so when using an application which is 

significantly reliant on the device’s recognition capabilities.   

 

6.5 Application Performance 
The performance of the application could be a concern for some users. The Leap Motion is 

advertised as a compact, portable device – it would therefore not be unreasonable to assume 

that some users will pair it with low-power laptops, netbooks and so on. Although the 

application is relatively simple, it surprisingly has a fairly high resource usage.  

Figure 6.7 shows the resource usage of a system on which the application was ran for 

approximately 90 seconds. Before the application is started, we can see a system memory 

(RAM) usage of 4646MB and a video memory (VRAM) usage of 757MB. After running the 

application for around 90 seconds, we see a usage of 5114MB RAM and 1306MB VRAM, a 

difference of 468MB and 549MB respectively. For systems which use a shared pool of VRAM 

and RAM this could be problematic as the application therefore uses just over 1GB of 

combined memory. With extended use this is liable to increase, depending on the efficiency of 

the JVM’s garbage collection. 

The application was tested on two platforms: The first, a desktop with 6GB VRAM and 8GB 

RAM. The second, a laptop with 2GB combined memory.  Throughout development the latter 

system was noticeably slower, with hands appearing delayed as they moved across the 

application window. Performance on the desktop, on the other hand, was never a problem. This 

performance difference is evident in the provided video demo – the first system shown (laptop) 

is noticeably slower than the second system (desktop). When looking at the extensibility of the 

application, its resource usage should therefore be considered a potential limitation.  

  

Figure 6.7: Comparison of video memory and system memory used after the application was 

ran for approximately 90 seconds 
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6.6 User Feedback 
Although the application has a deliberately simple user interface, there are other aspects of the 

system on which user feedback is helpful. In order to gather feedback on the application’s 

interface, and the application in general, the questionnaire shown in figure 6.7 was given to 5 

participants. Each participant was asked to try the calibration and recognition features of the 

application, without any external guidance. After 5 minutes of experience with the application, 

participants were asked to answer the questionnaire and prompted for any additional feedback 

if possible.  

The questionnaire is based on the Likert scale question format [10]. The use of a Likert scale 

allows users to select an option from a multiple point scale (in this case five) which represents 

how much the user agrees or disagrees with a particular statement. The scale is best used when 

measuring the attitudes of participants – this is therefore a good match for my study as I’m 

most interested in what users opinions of the application are after having used it. From 1 to 5, 

the Likert scale represents ‘Strongly Disagree’, ‘Disagree’, ‘Neutral’, ‘Agree’, and ‘Strongly 

Agree’. 

The results of the questionnaires are shown in Tables 6.2 and 6.3. Table 6.2 shows the Likert 

responses, tallied for all users with an average response for each question. Table 6.3 shows the 

additional feedback comments provided by each user. With the results of the user study stored, 

each of the questionnaire statements are evaluated in turn in combination with the additional 

feedback provided. 

Firstly, statement 1, “The application was easy to understand and use”, considers the 

accessibility of the application overall. When designing an application it’s important to 

consider both experienced users and users who may have not come across a Leap Motion 

device before. The application should therefore be straightforward and simple to use, without 

having to consult walkthroughs or guides. Additionally, two users added relevant comments as 

extra feedback – user 2 stated the UI was “simple” and “easy to use without experience”. User 

5 stated the interface was “simple to use with just my hands”.  The average response to this 

statement was 4.4, representing an average opinion between ‘Agree’ and ‘Strongly Agree’.  

Statement 2, “The interface buttons were easy to interact with”, looked at the responsiveness 

of the interface, particularly the buttons used to manoeuvre around the application. This aspect 

was probably the greatest unknown as I wasn’t sure whether users would approve of it over 

simply clicking buttons with a mouse. As with statement 1, however, the average response was 

4.4. This implies that users were satisfied with the Leap Motion based interface. 

From observing users with the application, all managed to press each button on their first or 

second attempt. Out of the 5 participants, every user attempted to press the buttons using the 

Leap Motion first, rather than attempting to click it with a mouse. This suggests that each user 

subconsciously expected the interface to function using the Leap Motion due to the reliance on 

it for gesture recognition.  

Statement 3, “Gesture recognition was always accurate”, was the lowest scoring statement with 

an average response of 3.8. This was in line with my expectations as there were a number of 

recognition issues with some gestures, as documented in section 6.4. Users found it most 

difficult to match letters ‘I’ and ‘O’, with 2/5 users mentioning this in their additional feedback. 

Other problematic gestures mentioned included ‘G’, ‘L’, ‘M’, N’, and ‘V’. One user mentioned 



43 

 

“Hands sometimes not representing my movements properly”, which was another issue noted 

during development.  

Statement 4, “Calibration of gestures was well implemented”, saw the highest average response 

of 4.8. In addition, two users included additional feedback relating to this statement: “Images 

were helpful for calibration”, and “Recording images were convenient to show me how to make 

each gesture”.  As none of the users had previous experience with a sign language, it was agreed 

that the inclusion of a sample image for each gesture during recording was helpful as a guide.  

Finally, statement 5, “The application performed well (No glitches, stutters, bugs, or lag)”, 

considered the application’s stability. The statement was met with an average response of 4.0. 

Throughout observation of each user, there were several times where the display of the user’s 

hands did not fully match their actual positions, which occurred when fingers were pressed 

together or interleaved. Unfortunately this is a limitation on the device’s capabilities so cannot 

be easily resolved. The application as a whole, however, maintained a regular performance 

level throughout each test, and did not close unless a request was explicitly sent by a user (e.g. 

by closing the application window manually).  
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Figure 6.8: User feedback questionnaire 
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Table 6.2: Combined numeric results of user feedback questionnaires 

Gesture Interpreter – Questionnaire Feedback 

Question  Response Given Average 

Response 1 2 3 4 5 

1    3 2 4.4 

2    3 2 4.4 

3   2 2 1 3.8 

4    1 4 4.8 

5   1 3 1 4.0 

 
Table 6.3: Additional feedback provided in feedback questionnaire from each user (if any) 

Gesture Interpreter – Additional Feedback 

User Feedback Given 

1 Images were helpful for calibration. 

Difficulty making gestures I,O,G.  

2 Simple UI, easy to use without experience. 

Hands sometimes not representing my movements properly. 

3 Had trouble with gestures like l, m, n and sometimes v all being 

detected as each other. 

4 None given 

5 Hard to recognise gestures like I and O, kept getting confused 

between them. 

Hands glitching out when I moved sometimes. 

Same problem with other gestures like M and N.  

Interface was good to use with just my hands.  

Recording images were convenient to show me how to make each 

gesture. 
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Chapter 7 

 

Conclusion 

 
7.1 Aims Analysis 
In the introductory chapter, a number of aims were defined for the project application. By 

revisiting these it can be established whether or not the application is successful in fulfilling 

its requirements. The aims were identified as follows:  

 Record sign language gestures performed by a user by storing image data from a Leap 

Motion device 

 Recognise the gestures representing British Sign Language alphabet characters and 

distinguish between them 

 Given an unknown gesture by a user as input, output an identified matching gesture 

with an associated similarity score 

The first aim of being able to store gestures was successful. The application allows a user to 

save either motion-based or stationary gestures for a given alphabet character. The user is able 

to perform a gesture of their own choosing, or a copy of one provided in the example image 

shown for each character.  

The only restrictions on the user are the limitations of the Leap Motion device itself. The user 

is limited to gestures which do not involve the face or body (these would not be detected by 

the Leap Motion) and which can be fully captured within the Leap Motion’s field of view. 

Gestures which are exceedingly similar to one another may prove difficult to distinguish during 

recognition, due in part to the restricted set of features that can be extracted from a Leap Motion 

data frame, but also due to the limitations of the Leap Motion software as covered in section 

6.4.  

The second aim looks at the explicit range of categories which can be observed by the 

application. The system is successful in this regard as it is able to recognise all 26 BSL 

representations of alphabet characters, though with some caveats. The hand positions of similar 

gestures should be exaggerated in some way, for example performing the gesture at a different 

angle than you normally would. The user must consider the degree of similarity of all gestures 

they record using the application, in order to improve the reliability of the system’s recognition.  

The third aim looks at providing feedback to a user in order to confirm that their actions are 

recognized by the application. This third aim was also successful. When the application’s 

recognition method is called, the returning object contains the closest matching gesture as well 

as a similarity score. This score is calculated by normalizing the distance between this closest 

matching gesture and the input gesture as a percentage value between 0 and 100. With this, the 

user is provided with feedback on the quality of the recognition, as well as the recognition 

itself.  
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7.2 Future Work 
There are a number of areas which could be explored further in order to enhance both the 

application in general and the accuracy of its recognition. 

Data inference capabilities 

In its current state, the Leap Motion uses a best-guess system in order to calculate the position, 

rotation, and other characteristics of hands detected in its field of view. Improved inference 

capabilities would allow the Leap Motion to make better judgements given a frame of data 

which contains unclear hand positions. One example of this would be BSL gestures which 

require hands or fingers to be stacked on top of each other. The upper hand is blocked by the 

lower hand and thus the Leap Motion is unable to categorize the data.  

A possible solution to this issue could be the use of multiple Leap Motion devices. One device 

could be positioned below the hands as usual, with the other mounted above or to the side of 

the interaction area. This would limit the portability of the application but may assist in 

clarifying obscured hand positions. However, this would introduce an additional challenge of 

synchronizing multiple Leap Motion devices as well as combining the data received by each 

device on each new frame of image data.  

Alternate recognition algorithm 

As described in chapter 2, there are a number of machine learning algorithms currently 

available and probably many more under development. Possible areas of improvement could 

be found in the speed of the algorithm, as well as its performance with a restricted number of 

training sets. As seen in chapter 6, the implemented algorithm required 9 training sets before 

an accuracy rating of 100% was reached.  

Ideally this would’ve been possible with only 1 training set, though this also relates to the 

quality of the features that can be selected from the Leap Motion frame data – which although 

reasonably varied at the moment, has the potential for further improvement.  

The current recognition algorithm uses custom Point objects which represent co-ordinates in 

3D space. The implementation of additional algorithms with support for more standard data 

types (floats, booleans etc.) would allow for more varied features to be recorded for gestures 

as they would not be limited to only types which could be easily converted to Point objects, 

e.g. 3D vectors. 

Improved Leap Motion software 

As discussed in chapter 6, the Leap Motion’s current software and API is limited in some 

regards. An expanded API with a wider range of hand feature tracking would allow for more 

concise categorization of gestures. A major software update (V3), ‘Orion’, was released in a 

beta state in February 2016 [9]. Orion boasts lower latency and better tracking of hands, as well 

as reduced CPU usage.  

Unfortunately the update has several known issues, including an issue with the tracking of 

hands which overlap, stating that they’re currently handled worse in firmware V3 than in V2. 

From experience with the new firmware, compared with V2, the inference capabilities of V3 

are greatly reduced, so much so that it is not suitable to recognise gestures which contain any 

degree of hand overlapping. Ultimately until this is resolved V3 isn’t suitable for use with this 
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application. For applications where hands aren’t required to overlap, Orion’s improved tracking 

in all other aspects is definitely noticeable.  

 

7.3 Lessons Learned 
Probably the most substantial thing to take away from this project would be the experience of 

working independently to solve a problem that I had no prior knowledge of, within a specific 

time span.  

The project required me to interact with a new device (Leap Motion) as well as several new 

APIs (Leap Motion, JavaFX) and integrate them appropriately into a single application. Despite 

some base knowledge of the Java programming language, it was the first time I had been 

exposed to many new technologies at once and tasked with developing software using them all 

appropriately.  

Although hearing of terms such as machine learning in the past, the project required me to 

explore the area in greater detail in order to implement a recognition algorithm which would 

satisfy the primary objective of the application. 

If I was to undertake the project again, I would definitely have started development earlier. 

Looking back, I should’ve spent more time on the project over the summer break, so as to not 

have to reduce the scope of the application in order to actually complete it in time. At the time 

I did not consider the challenges I would face during development, and the impact these would 

have on the project’s overall timeline.  

With more time available I would’ve liked to expand on the uses of the application. Learning 

a sign language is likely to be more effective with a variety of activities which the user can 

participate in, all of which involve the recognition of gestures in some way. The current 

implementation shows that gesture recognition is possible, but its utilization is more of a proof 

of concept than anything else at this point.  

 

7.4 Project Conclusion 
Overall I consider the project to be a success. The application successfully met all of its original 

aims, as well as all of the requirements I had originally defined. Undertaking the project helped 

develop both my technical and development skills as well as other skills such as time 

management and strategic planning. The completion of the application has shown that the Leap 

Motion is certainly capable of gesture recognition, with the caveat that the device’s software 

requires further development. The recent firmware V3 update, Orion, although currently in a 

beta state, looks to be very promising for the Leap Motion’s future. 
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